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1. Introduction

Although the outcome of therapy for leukemia has im-
proved over the years, mainly in younger patients, less than a
third of adults with acute myeloid leukemia (AMLa), for
example, are cured by current treatments, a fact stressing the
need for new therapeutic approaches. Since leukemias are
considered disorders of self-renewal, differentiation, and
apoptosis of hematopoietic stem cells (HSCs) and/or their
early progenitors, the treatment of leukemia is rapidly chan-
ging from conventional chemotherapy toward a more inno-
vative individualized and targeted therapy.1,2

The discovery of leukemia stems cells (LSCs) in the late
1990s3,4 as a minor fraction within the subpopulation of
hematopoietic cells and the compelling research efforts in-
itiated thereafter have clearly shown that many malignancies

are maintained via stemlike cells having the capacity for in-
definite self-renewal. This LSC hypothesis has established the
notion that the emergence of drug resistance and the clinical
relapse of leukemias following an initial remission induced by
cytotoxic or targeted therapy agents is related to acquired
mutations of LSCs. Therefore, eradication of LSCs is consid-
ered necessary for the radical treatment of leukemias. As a
matter of fact, novel exploitable targets for leukemia therapy
emerged including enzymes like tyrosine kinases involved in
signal transduction pathways, genes encoding proteins that
regulate apoptosis and differentiation of malignant cells, cell-
lineage transcriptional factors, angiogenesis factors, and unique
proteins driving the cell cycle machinery.1,2,5-10 Interestingly,
within the group of antileukemia agents exist small molecule
drugs like tyrosine kinase inhibitors, proteasome inhibitors,
farnesyl transferase inhibitors, hypomethylating agents, histone
deacetylase inhibitors, mTOR targeting agents, bcl-2 inhibitors,
and inhibitors of cyclin-dependent kinases (Figure 1).

This paper is a comprehensive overview of the scientific
efforts made to develop novel antileukemia therapeutics by
presenting chemical, pharmacological, and pharmacoge-
nomic data obtained during preclinical and clinical assess-
ment of these agents.Furthermore, the designated synthesis of
newmedicines inducing differentiation, cell cycle arrest, and/or
promoting apoptosis along with multitargeted therapeutics
will be also discussed. Such novel agents can be used in com-
bination with other agents modulating different signaling
pathways and molecular targets within the leukemia cells to
overcome the emergence of drug resistance. This information
can then be discussed from a pharmacogenomic view of anti-
leukemia therapeutics. Individual genetic variations recorded
in antileukemia drug therapy can be critical for personalized
medicine and their clinical exploitation can achieve better
pharmacotherapy outcomes.

2. Leukemias as Clonal Disorders of HSCs and Early Multi-

potent Progenitors

Studies in the early 1970s by Fialkow et al. have revealed
that human leukemias are more or less clonal disorders
originating from self-proliferating hematopoietic cells in the
bonemarrow.11 Althoughmyeloblasts, erythroblasts, lympho-
blasts, and others of early undifferentiated progenitors were
considered responsible for specific types of acute or chronic
myeloid, erythroid, and lymphoid leukemias, it was not clear
which one of the stem cells and/or early progenitors are
involved in leukemogenesis.
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molecule inhibitor; TG, thioguanine; TNF, tumor necrosis factor;
TPMT, thiopurine S-methyltransferase; TrkA, tropomyosin receptor
kinase A; TSA, trichostatin; TYMS, thymidylate synthase; VEGFR,
vascular endothelial growth factor receptor; VPA, valproic acid; XIAP,
X-linked inhibitor of apoptosis protein.
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The study of experimental leukemias (mouse and human) in
culture and the unique ability of certain cell fraction in the
leukemic cell population to develop colonies with unrestricted
ability to grow via self-renewal made quite clear and also con-
firmed that leukemias are indeed clonal disorders initiating from
a small number of undifferentiated cells. In term of properties,
such cells were grown and maturated in vitro (cultures) and
in vivo (animals) having a specific neoplastic phenotype relati-
vely stable.2,10 In contrast to normal hematopoietic cells, leu-
kemic cells remain in culture undifferentiated with an acquired
ability to proliferate and invade but unable to senesce.

The evidence that normal hematopoietic cells grown in fetal
liver or in spleen can be transformed into leukemia cells able to
propagate the leukemia in mice, and also samples of primary
leukemic cells derived from leukemic subjects are grown and
developed the disease inNOD/SCIDmice,4 leaves no doubt that
leukemogenesis is initiated at the level of either HSCs or early
uncommitted progenitors. LSCs exhibit the same cell surface
antigens with normal HSCs. Leukemias usually are initiated
within the bone marrow environment and affect normal hema-
topoiesis eitherviaparacrine functionorotherwise in the stemcell
niche.1RegardlesshowLSCsand leukemia-initiatingcells (LICs)
are born, grow, progress via self-renewal, and intersect with
normalHSCs in theirmicroenvironment, their existence indicates
that leukemic cell growth and/or self-renewal is regulated at the
cellular level via signaling pathways induced by external stimuli
and operating at different levels: level of HSC niche, erythro-
blastic islands, and other sites. SCF/c-kit, Notch, Wnt, and Epo
are critical signaling pathways that give the ability to LSCs to
propagate thedisease.Moreover, epigenetic eventsorproduction
of fused transcription factors and enzymes also appear to con-
tribute to leukemic cell growth and maintenance.1,5,12

3. Conceptual Approaches Exploiting Induction of Differen-

tiation and Apoptosis To Eradicate LSCs

Chemotherapy of human leukemias with the use of con-
ventional antineoplastic agents administered under several

combination protocols is accompanied by severe adverse
reactions, including myelosuppression, loss of hair, and tran-
sient damage of rapidly replicating tissues. This less selective
pharmacological approach used for years was based on the
principle of “just killing” in any way the leukemia cells using
all types of antineoplastic agents (antimetabolites, antitumor
antibiotics, alkylating agents, blockers of mitosis, and even
organometallic compounds and natural products).

The knowledge accumulated over the past several years on
the nature of leukemic cells indicates that such cells can be
converted into nondividing growth arrested cells unable to
supportmalignant growth.2Moreover, it has been established
that apoptosis can also be induced in leukemic cells using
pharmaceutical agents and metabolic modulators, like kinase
inhibitors. All this understanding taken together with the
dependency of leukemia cells on microenvironmental factors
and external stimuli suggests thatmultilevel targeting can be a
fruitful approach to eradicate leukemia cells under less harm-
ful conditions to adjacent normal tissues.1,5,12 A future chal-
lenge will then be to design agents that can differentiate
leukemia cells into nondividing/nonmalignant growth-
arrested cells and/or promote cell death concomitantly or
thereafter in leukemia cell differentiated progeny.

Therefore, at least three classes of agents can be developed, as
illustrated in Figure 2: (a) agents able to induce terminal cell
differentiation and cessation of self-renewal, (b) agents able to
exclusively promote apoptosis by acting at intrinsic or extrinsic
signaling pathways, and (c) agents having structural domains
that can promote both processes concomitantly by regulating
geneactivationand/or repressionprocesses.Agentsbelonging to
class A can be very potent inducers of leukemia cell differentia-
tion, like retinoids, As2O3, potentmolecules like suberoylanilide
hydroxamic acid (SAHA, 1b), phenyl acetate, and butyric acid
analogues, or other agents like pyridine derivatives, cyclic ureas,
and many others reported elsewhere.2,9 Class B agents that can
promoteapoptosis canbeeither targetedantibodiesor inhibitors
of kinases involved in cell signaling pathways, tumor necrosis
factor (TNF) and TRAIL-like agents as well as BH-mimetics,
blocking the function of Bcl protein in mitochondria.5,6 Agents
of classAandclassBcanbecombinedappropriately, usedeither
sequentially or in parallel, as depicted for class C1. Although
these agentsmaydiffer in their optimum inducing concentration
in promoting differentiation and/or apoptosis, pharmacokine-
tics studies may provide useful and effective management pro-
tocols for allowing them to carry out both functions. The most
challenging approach, however, has been the design and deve-
lopment of agents of class C2. Hybrid agents sharing structural
domains responsible for promoting differentiation induction
and apoptosis in the same leukemia cells can be useful agents
to disrupt their functions. The latter class of pharmaceutical
agents must regulate critical steps involved in epigenetic regula-
tion of gene activation and silencing. This can be done either via
modulation of trans- and cis-elements of superfine structure of
chromatinby interacting eitherdirectlyon thegenomeat specific
promoter sequences or distant elements or via cofactors regulat-
ing the active and repressive transcription complexes. Such inno-
vative antileukemic agents can be combined even with relatively
lower concentrations of conventional antineoplastic agents.

4. Human Leukemia Cells Can Be Converted into Differen-

tiated Nondividing Progeny

The discovery made by Friend et al. (1971)13 that virus-
transformed hematopoietic progenitors derived from mouse

Figure 1. Diagrammatic presentation of molecular targets for
known classes of small molecule antileukemia drugs used in clinical
practice or under development and the proposed strategy for
innovative multifunctional leukemia therapeutics (see text for
details). Abbreviations are as follows: HSP, heat shock protein;
RAR, retinoid acid receptor; RXR, retinoid X receptor; DNMTs,
DNA methyltransferases; HDACs, histone deacetylases; CDKs,
cyclin-dependent kinases; mTOR,mammalian target of rapamycin;
FT, farnesyl transferase; FLT3, Fms-like tyrosine kinase 3.
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spleen cells can be differentiated into hemoglobin producing
cells in culture created the fertile ground and sparked many
differentiation-related studies in oncology with mouse or
human experimental leukemias. Differentiation of many leu-
kemia cell lines (MEL, K-562, HEL, HL-60, KJ1, just to
mention few) confirmed the working hypothesis proposed
by L. Sachs that leukemic cells still retain the ability to differ-
entiate via epigenetic regulation, regardless of the existing
genetic abnormalities in such cells. Conversion of highly
malignant leukemia cells into growth-arrested and nondivid-
ing progenies (myeloid or erythroid) provided the frame for
the so-called “differentiation therapy of cancer”, a field that
recently began to yield interesting antileukemia therapeutics
for the treatment of PML,myelodysplastic syndrome (MDS),
and other malignancies.2,14

Over thepast 30years, a lot of innovationsweremadebyusing
in vitro models of leukemia cell differentiation. Such systems
have been reviewed elsewhere.2 In all these cases, the induc-
tion of leukemic cell differentiation was achieved in parallel with
the development of suitable inducing agents and/or metabolic
inhibitors also capable of restricting cell growth of these cells
(Table1).Amongthevariousagentsdeveloped, either fromhigh-
throughput screening or selection based on predictive structure-
-activity relations (SAR) methodology, are agents likely to
act at specific cell targets, such as metabolic enzymes, retinoid
receptors, epigenetic regulators (transcription factors and cis-
regulatory elements), and/or proteins with as yet unknown
mechanism(s) of action. It is emphasized that the agents deve-
loped so far as potent inducers of leukemic cell differentiation

using the MEL, HL-60, or K-562 cell model systems are quite
diverse in structure and physicochemical properties because of
targeting of various cellular components. The site of action also
varies from cell membrane sites, signaling pathways, cell cycle
kinases, cytoplasmic proteins, nuclear receptors, and several
other components.2 The development of these inducers thus far
gave several classes of lowmolecular weight agents, as shown in
Table 1. Some of these agents are cytotoxic on amolecular basis,
and others are potent inducers of differentiation that cause cell
growth arrest. This depends on their optimum concentration;
some of them are nonspecific in causing cell-cycle arrest and cell
death, while other agents do the opposite. However, an impor-
tant issue is the development of bi- or multifunctional agents
actingatmultiple levelsandcapableoferadicating thepopulation
of LSCs, quiescent or not efficiently. By developing agents that
carry two or three functional pharmacophore groups in their
molecular structures to modulate different target molecules, one
should expect to see better antileukemic agents with improved
clinical outcome (Figures 1 and 2).

5. Differentiation Inducing Agents

The discovery of Charlotte Friend established the notion
that induction of differentiation by chemical agents in leuke-
mic cells could reprogram the cells toward proliferation arrest
and/or programmed cell death.1,13,15 The first experimental
attempts, as initial basic research focused on chemical indu-
cers of differentiation, drew attention to “polar/apolar com-
pounds”, later known as hybrid polar compounds. Structure
optimization of hexamethylene bisacetamide (HMBA, 1a) led

Figure 2. Conceptual approaches combining induction of differentiation and promotion of apoptosis (cell death) of leukemia cells. Differentiation
inducing agents (DIA) can disrupt self-renewal and cause growth arrest in terminal differentiated progeny unable to support malignant growth
(AandC1). In contrast, apoptosis promotingagents (APA) can stimulate cell death signaling inundifferentiatedaswell as differentiatedprogenitors of
leukemic cells (B and C1). Finally, differentiation and apoptosis hybrid (DAH) agents represent molecules with structural domains as bifunctional
agents that can promote differentiation and/or apoptosis leading to eradication of leukemic cells (cell death) (C2) (see text for details).
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to the discovery of 1b, a histone deacetylase inhibitor
(HDACI). Experimentation with cytotoxic nucleoside analo-
gues implicated in epigenetic regulation of gene expression,
along with histone acetylation and methylation, revealed
that compounds such as 5-azacytidine16 (2a) and 5-deoxy-
azacytidine17 (decitabine, 2b) induce differentiation of leuke-
mic cells in lower concentrations, with parallel inhibition of
DNAmethylation via inhibition of the enzymeDNAmethyl-
transferase (DNMT). Finally, induction of differentiation of
teratocarcinoma cells by retinoic acid18 and discovery of
retinoic acid receptors19 revealed its regulatory role in key
signaling pathways and its successful clinical application to
treat acute promyelocytic leukemia (APL). These three classes
of agents are the most extensively studied in the search of
chemical inducers of differentiation of leukemic cells and are
more thoroughly presented below.

5.1. Hybrid/Polar Compounds and HDAC Inhibitors. Hy-
brid/polar compounds were named on the basis of their
physicochemical properties to have polar groups at their
terminals and a highly hydrophobic linker in the middle of
themolecule.20 1a (Figure 3A),21 themost promising agent of
hybrid/polar compounds, reached phase II clinical trials on
MDS andAML.22 The discouraging results of this trial (high
doses, suboptimal activity, and important toxicities) urged
researchers to further optimize the potency of 1a. Since tri-
and tetraamides proved to be ineffective,23 replacement of
the acetamide moiety with the metal chelating N-hydroxya-
mide emerged as an optimal one, and as a result, the
synthesized suberic bishydroxamic acid (SBHA) displayed
significantly increased differentiation-induced potency to
leukemic cells compared to 1a.24 Structure variations led to
the discovery of 1b, later named as vorinostat (Figure 3A),
that was themost potent compound at that time.25 1b proved
to be a HDACI26 and after extensive clinical investigation
was launched recently as an FDA approved drug for the
treatment of the rare cutaneous T-cell lymphoma.20 Also,
romidepsin very recently (November 2009) gained FDA
approval for the same pathological condition.27

Since HDACIs have been extensively reviewed recently,28

attentionwill be givenhere onHDACIs that are in clinical trials
for leukemia.HDACIs are studied either alone or commonly in
combination with DNMT inhibitors. JNJ1624119928 is in
preclinical development for leukemias, and pyroxamide and
SB93928 are in phase I clinical trials for hematological malig-
nancies. Further HDACIs in development are belinostat,
entinostat, mocetinostat, romidepsin, panobinostat, and 1b,
which have been advanced to phase III clinical trials as a
monotherapy or in combination with other agents (more
information about these compounds can be found in Table 2).
Combination trials of these inhibitors with hypomethylating
agents are also commented in the paragraphs below.

5.2. DNMT Inhibitors. DNMTs are the enzymes respon-
sible for DNA methylation in mammals, being part of the
epigenetic regulation of gene expression in eukaryotic cells.
Epigenetic regulation of gene expression is the “switch” turning
genes on and off by DNA methylation of CpG islands and/or
histone modifications (acetylation, methylation) in specific
lysine and arginine residues.28-31 Inactivation of tumor sup-
pressor genes is a phenomenon often observed in the initiation
andprogressionof leukemiaaswell as inmalignancy in general.
In a recent study,30 the genes THBS1 andRilwere found to be
100%hypermethylated in leukemia cell lines, andECAD,P15,
ER, TMS1, and THBS4 were over 60% hypermethylated in
leukemia cell lines. Furthermore, in a study in which bone

Table 1. Chemical Inducers Triggering in Vitro Differentiation of
Leukemia Cell Modelsa

inducer cell model

terminal differentiated

phenotype

1-R,25-dihydroxyvitamin D3 HL-60 monocytic/

macrophage

3-deazauridine HL-60 granulocytic

5-azacytidine (2a) MEL erythrocytic

HL-60 granulocytic

K-56HL-602 erythrocytic

5-FU K-562 erythrocytic

6-TG HL-60 granulocytic

actinomycin D MEL erythrocytic

activin A MEL erythrocytic

antifolates HL-60 granulocytic

anthracyclins HL-60 granulocytic

aphidicolin HL-60 megakaryocytic

apicidin K-562 erythrocytic

Ara-C HL-60 monocytic

K-562 erythrocytic

benzodiazepines MEL erythrocytic

bis-hydroxamic acids MEL erythrocytic

HL-60 granulocytic

butyric acid HL-60 monocytic

K-562 erythrocytic

bryostatin-1 HL-60 monocytic

camptothecin HL-60 granulocytic

chromomycin K-562 erythrocytic

cis-platin K-562 erythrocytic

cyclic ureas and thioureas MEL erythrocytic

dbcAMP HL-60 granulocytic

DMSO MEL erythrocytic

HL-60 granulocytic

herbimycin K-562 erythrocytic

hemin K-562 erythrocytic

HMBA (1a) MEL erythrocytic

HL-60 granulocytic

K-562 erythrocytic/

megakaryocytic

hydroxyurea K-562 erythrocytic

hypoxanthine MEL erythrocytic

HL-60 granulocytic

mithramycin K-562 erythrocytic

phenyl acetate (PA) K-562 erythrocytic

phorbol esters (PMA, TPA) HL-60 monocytic/

macrophage

K-562 megakaryocytic

PMEA K-562 erythrocytic

purine analogues MEL erythrocytic

pyridine derivatives MEL erythrocytic

resveratrol K-562 erythrocytic

retinoids HL-60 granulocytic

SAHA (1b) MEL erythrocytic

sodium butyrate MEL erythrocytic

K-562 erythrocytic/

megakaryocytic

tallimustine K-562 erythrocytic

tiazofurin HL-60 erythrocytic

K-562 granulocytic

TSA MEL erythrocytic

tunicamycin HL-60 monocytic

UDP MEL erythrocytic

bitamin B12 K-562 erythrocytic

xylosyladenosine MEL erythrocytic
aFordetails see ref2.Abbreviations:Ara-C, cytarabine (cytosine arabinoside);

DMSO, dimethyl sulfoxide; 5-FU, 5-fluorouracil; HMBA, hexamethylene bisa-
cetamide; PMEA, 9-(2-phosphonylmethoxyethyl)adenine; SAHA, suberoylani-
lide hydroxamic acid; 6-TG, 6-thioguanine; TSA, trichostatin; UDP, ureido
derivatives of pyridine.
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marrow samples from AML patients were analyzed, it was
found that 95% had at least one of the following genes
hypermethylated and75%had twoormore. The genes referred
to are calcitonin, estrogen receptor, E-cadherin, p15, p16, Rb,
GST-Pi, andHIC1.29 Also, the role ofDNAhypermethylation
in acute lymphocytic leukemia (ALL) initiation and progres-
sion was presented recently.32 On this basis, hypomethylating
agents could prove to be useful tools in leukemia therapy and
some of them are in clinical trials or in clinical use.

Hypomethylating agents, or more specifically DNMT
inhibitors, can be divided into two categories33 with respect
to their chemical structure: nucleoside analogues and non-
nucleoside inhibitors. The second can be further divided into
small molecule inhibitors (SMIs) and natural products.

The most studied nucleoside analogues are 2a, 2b, and
zebularine34 (2c) (Figure 3B1). The first two are highly
cytotoxic compounds, but at lower concentrations they can
induce differentiation of leukemic cells and have an impact
on DNAmethylation.16,17,35 So far, they are FDA approved
for the treatment of MDS and chronic myelomonocytic
leukemia (CMML), but they also are included in a number
of clinical trials, alone or in combination, for other malig-
nancies (Tables 3 and 4).

2b is incorporated in the DNA where it traps DNMTs.
DNMTs methylate cytosine residues at the 50-C. Since the
50-C is replaced with a nitrogen atom in themolecule of 2b, no
methylation can take place and a covalent bond is generated
between the enzyme and the triazine nucleosides after its
incorporation into DNA.36 In low doses the result is hypo-
methylation, but in higher doses steric inhibition of DNA
replication and repair due to the bulky adducts is thought to
be the cause of 2b cytotoxicity.37 2a is thought to be con-
verted to 2bby ribonucleotide reductase before its incorpora-
tion into DNA. Besides, its cell growth inhibitory effect is
also caused by its incorporation into RNAmolecules and by
affecting protein synthesis.36 2c, initially synthesized as a
cytidine deaminase inhibitor,34 is a deaminocytosine nucleo-
tide that was developed to overcome 2a and 2b instability in
neutral and acidic aqueous solutions in order to make oral
administration of the drug feasible.38 However, low clinical
efficiency, mostly due to cytidine deaminase inactivation and
antagonism with the increased cytidine and deoxycytidine
levels, has hindered its further development.38 Finally, a
second generation inhibitor currently under preclinical deve-
lopment is the 2b dinucleotide SGI-11039 (2d, Figure 3B1)
that has proved advantageous in the manner of cytidine

Figure 3. Differentiation inducing agents (DIA).
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Table 2. Significant HDAC Inhibitors in Clinical Trials for Leukemiaa

compd category leukemia clinical trials phase (NCT ID)b

belinostat (PXD101,

NSC 726630),

TopoTarget

hydroxamic acid AML phase II (NCT00357032)

AML, combination with idarubicin phase I/II (NCT00878722)

entinostat (MS-275,

MS275, SNDX-275,

NSC 706995), Syndax

Pharmaceuticals

benzamide MDS, AML, ALL, combination

with GM-CSF

phase II (NCT00462605)

hematologic cancer phase I (NCT00015925)

mocetinostat

(MGCD0103),

MethylGene

benzamide CLL phase II (NCT00431873)

untreated AML, high risk MDS phase II (NCT00374296)

high risk MDS, AML phase I/II (NCT00324220)

MDS, leukemia phase I (NCT00324194,

NCT00324129)

pivanex, Titan

Pharmaceuticals

short chain fatty acid CLL phase II (NCT00083473)

pyroxamide hydroxamic acid advanced cancer phase I (NCT00042900)

SB939, SBIO hydroxamic acid solid tumors, hematologic malignancies phase I (NCT00741234)

romidepsin (FR901228,

FK228, NSC630176),

Gloucester

Pharmaceuticals

bicyclic depsipeptide AML phase II (NCT00062075)

MDS, AML, NHL phase II (NCT00042822)

CLL and small lympholytic lymphoma,

combination with bortezomib

phase I (NCT00963274)

hematologic cancer phase I (NCT00024180)

panobinostat (LBH589,

LBH589, NVP-

LBH589, LBH489B,

LBH489A), Novartis

hydroxamic acid (iv and po)

flexibility in developing

combination regiments

AML phase II (NCT00880269)

CML phase II/III (NCT00449761,

NCT00451035)

ALL, AML phase II (NCT00723203)

AML, combination with idarubicin phase I/II (NCT00840346)

CML, combination with imatinib phase I (NCT00686218)

T-cell lymphoma and leukemia phase II (NCT00699296)

vorinostat (zolinza,

SAHA, 1b), Merck

hydroxamic acid (FDA

approved Oct 2006 for

cTCL)

AML phase II (NCT00305773)

AML, MDS, combination with sorafenib phase I (NCT00875745)

leukemia, MDS, combination with idarubicin phase I (NCT00331513)

AML, MDS, combination

with idarubicin and cytarabine

phase II (NCT00656617)

AML, combination with

gemtuzumab and azacytidine

phase I/II (NCT00895934)

acute leukemia, MDS, combination

with cytarabine and etoposide

phase I (NCT00357305)

AML, combination with gemtuzumab phase II (NCT00673153)

mantle cell lymphoma, CLL, NHL,

combination with cladribine

and rituximab

phase I/II (NCT00764517)

B-cell CLL and small lymphocytic lymphoma,

combination with

rituximab and fludarabine phosphate

phase II (NCT00918723)

acute leukemia or CML, combination with flavopiridol phase I (NCT00278330)

AML, MDS, combination with

bortezomib

phase II (NCT00818649)

CML, ALL, combination with

dasatinib

phase I (NCT00816283)

ALL, lymphoblastic lymphoma, with

decitabine and combination

chemotherapy

phase I (NCT00882206)

a Source: http://www.clinicaltrials.gov/. Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; CLL, chronic lymphoid
leukemia; CML, chronic myeloid leukemia; cTCL, cutaneous T-cell lymphoma; MDS, myelodysplastic syndrome; NHL, non-Hodgkin’s lymphoma.
bRepresents the National Clinical Trials identifier (NCT ID).
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deaminase inactivation but has no improved stability in
comparison to 2b.40

In the field of SMIs, a number of compounds have been
found to possess DNMT’s inhibitory activity. At first, the
approach to test known drugs for inhibitory activity was
used, and hydralazine, procaine, and procainamide were
recognized as DNMT inhibitors.41 A series of constraint
analogues of procaine were also synthesized but with no
inhibitory activity.42 Also, a second approach applied was
the rational design by using an in silico method that resulted
in the identification of RG-10843 (2e) (Figure 3B2) as a
DNMT1 inhibitor. 2e was found to inhibit DNMT1 with-
out binding covalently to it and caused DNA hypomethy-
lation and reactivation of tumor suppressor genes,44 a fact
of therapeutic significance in cancer to restrict cell proli-
feration.

The most intriguing natural products that exhibit DNMT
inhibitory activity are (-)-epigallocatechin 3-gallate (EGCG,
2f, Figure 3B3)45 and curcumin,46 though the multiple
biological effects of these compounds and their antioxidant
nature may intervene and deteriorate the evaluation of their
beneficial anticancer activity.

So far, the most promising results come from the field of
nucleoside analogues, since 2a and 2b induce strong de-
methylation as well as reactivation of tumor suppressor
genes with the drawback of cytotoxicity and pH-related in-
stability. 2c and 2e cause mediocre demethylation with mild
or no cytotoxicity and can be used as lead compounds for
further development.47

5.3. Combining HDAC and DNMT Inhibitors. As men-
tioned before, gene promoter hypermethylation and core
histone hypoacetylation are epigenetic modifications that

Table 3. Azacytidine and Decitabine in Clinical Trials for Leukemiaa

compd conditions phase (NCT ID)b

azacytidine (2a) (5-azacytidine,

NSC-102816, Vidaza), Celgene

CLL phase II (NCT00413478)

AML phase I/II (NCT01016600) phase II

(NCT00728520, NCT00387647,

NCT00739388)

CML phase II (NCT00813124)

AML, MDS phase II (NCT00795548, NCT00915785)

phase III (NCT00887068, NCT00422890)

AML, CMML, MDS phase I (NCT00528983, NCT00761722)

AML, MDS, combination with VPA and ATRA phase I/II (NCT00326170)

phase II (NCT00339196)

AML, combination with bortezomib phase I (NCT00624936)

AML, combination with standard chemotherapy phase II (NCT00915252)

AML, combination with gemtuzumab phase I/II (NCT00766116)

phase II (NCT00658814)

AML, combination with lenalinomide phase I/II (NCT00890929)

AML, MDS, combination with Ara-C phase I/II (NCT00569010)

AML, MDS, combination with lenalinomide phase I (NCT00923234)

MDS, CMML, combination with AsO3 phase II (NCT00118196)

decitabine (2b) (20-deoxy-5-azacytidine,
dezocytidine, NSC-127716,

Dacogen), Eisai

AML phase III (NCT00260832)

phase II/III (NCT00398983)

phase II, (NCT00358644, NCT00492401)

phase I (NCT00538876,

NCT00986804, NCT00882206)

ALL phase I (NCT00349596)

AML, combination with bexarotene phase I, NCT01001143

CML phase II (NCT00042003, NCT00042016,

NCT00041990)

CMML phase II (NCT00113321)

AML, MDS phase II (NCT00760084)

phase I (NCT00049582)

AML, ALL phase I (NCT00042796)

AML, combination with AsO3 and ascorbic acid phase I (NCT00671697)

AML, combination with rapamycin phase I (NCT00861874)

AML, combination with VPA þ ATRA phase II (NCT00867672)

AML, combination with bortezomib phase I (NCT00703300)

CML, combination with imatinib phase II (NCT00054431)

AML, MDS, combination with gemtuzumab phase II (NCT00882102)

AML, MDS, combination with clofarabine phase II (NCT00778375)

AML, MDS, combination with G-CSF and Ara-C phase II (NCT00740181)

leukemia, MDS, CML phase I/II (NCT00002832, NCT00002831)

leukemia, myelodysplastic syndromes,

myeloproliferative disorders,

combination with romidepsin

phase I (NCT00114257)

a Source: http://www.clinicaltrials.gov/. Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; ATRA, all trans retinoic
acid; CLL, chronic lymphoid leukemia; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic
syndrome; NHL, non-Hodgkin’s lymphoma; VPA, valproic acid. bRepresents the National Clinical Trials identifier (NCT ID).
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cause silencing of tumor suppressor genes and contribute to
malignancy. A connection between hypermethylated gene
promoter regions and histone modifications is emerging in
the last couple decades, leading to thorough examination of
potential synergistic anticancer activity of these two separate
mechanisms of epigenetic regulation.48-50 The finding that
the HDACI trichostatin (TSA) alone cannot up-regulate the
expression of hypermethylated genes but that this becomes
feasible upon co-treatment with the DNMT inhibitor 2b51

generated the idea of combining the two agents in therapeu-
tics in order to act synergistically for the re-expression of
genes. Thus, sequential administration of aDNMT inhibitor
followed by a HDACI could potentially increase the re-
sponse rate and duration to benefit the therapeutic outcome.
Alternatively, one also can consider the possibility of com-
bining DNMT inhibitors with agents causing histone lysine
demethylation, as recently proposed.52

The numerous clinical trials that employed DNMT and
HDACI are described in Table 4. The initial studies with
HDACI such as valproic acid (VPA) and phenyl butyrate
were insufficient to prove a distinct synergism, but this could
be attributed to their low HDACI activity.36 In order to
further explore the therapeutic potential of such an ap-
proach, more potent small molecule HDACIs should be
evaluated in newly designed clinical trials. Some of them
are now in progress.

5.4. Retinoids and RetinoidMimetics. Targeting the nuclear
retinoid receptors has so far been proven as a reliable and
effectivemethod in thedifferentiation therapyofAPL.Since the
initial FDA approval of all-trans retinoic acid (ATRA, 3a,
Figure 3C),53 extensive studies have been taking place in order
to reduce its severe side effects, improve its stability, and over-
come the acquired tumor resistance.Modifications made on 3a

include the addition of heteroatoms to the candidate molecules
and the replacement of the polyene chain with an aromatic
ring, which resulted in the synthesis of the retinoid acid recep-
tor R (RARR) selective tamibarotene (AM80, 3b, Figure 3C)
(EC50 = 45, 235, and 591 nM, for RARR, RARβ, and RARγ,
respectively).54 3b exhibits greater stability and bioavailability
than 3a because of the absence of the polyene chain and its
less hydrophobic character. Also, it appears to bind poorly to
cellular retinoic acid-binding proteins (CRABPs). As a result,

3b has the potential to overcome ATRA-acquired resistance,
since it is related to CRABPs that enhance 3a catabolism and
result in inefficiency.54,55 Furthermore, lack of binding toRARγ

receptor seems todiminish adverse effects, a fact that also favors
3b compared to 3a.56 3b has also proved to be effective in
patients that relapsed after complete remission with 3a (58%
against 20% complete remission with second treatment with
3a). Further clinical trials enhanced these clinical results to the
point of 3b commercial availability (2005 in Japan, Toko
Pharmaceuticals) and also fast drug designation for relapsed
or refractory APL by the FDA (June 2007).

As an alternative route to overcome the above-mentioned
3a’s drawbacks in adverse effects and emergence of resis-
tance, targeting of the retinoid X nuclear receptor (RXR)
emerged. Ligands that bind selectively to RXR emerged,
and the term “rexinoids” arose.55 Literature of rexinoids
accumulated,57-63 but the most important compound of this
category is considered to be the FDA approved bexarotene
(3c, Figure 3C)64 for the treatment of cutaneous T-cell
lymphoma. The putative use of 3c on leukemia is still in
preclinical stages, and for that reason it will not be exten-
sively reviewed in this paper. Regardless of their multifunc-
tionality, none of these retinoid compounds have entered
clinical trials for the treatment of leukemia, so an extensive
analysis is also out of the scope of this Perspective.

6. Induction of Apoptosis in Leukemias

6.1. Bcl-2 Inhibitors. Extensive therapeutic exploration of
apoptotic pathways has established B-cell lymphoma (Bcl)
proteins as a new target for cancer therapy over the past
years. Antisense RNA technology was the first approach
applied to suppress Bcl-2 function, but subsequently the
development of SMIs was considered as a more promising
therapeutic strategy. The target region of the Bcl-2 protein
was identified within a hydrophobic groove, the so-called
BH3 binding region. The hunt to “get into the groove”65

started with the screening of natural product libraries and
continued with computer-based screening methodology of
small molecules and the application of NMR fragment
screening. Up to today, several candidates have been in
preclinical development with very promising results, and
some of them even reached clinical trials as monotherapy

Table 4. Clinical Trials Combining HDAC and DNMT Inhibitorsa

HDAC and DNMT inhibitors conditions phase (NCT ID)b

VPA þ azacytidine AML, MDS phase II (NCT00382590)

sodium phenylbutyrate þ azacytidine AML, MDS phase I (NCT00004871)

AML, NHL, nSCLC, multiple myeloma, prostate cancer phase II (NCT00006019)

VPA þ decitabine AML, MDS phase I/II (NCT00075010)

phase II (NCT00414310)

AML, CLL, small lymphocytic lymphoma phase I (NCT00079378)

belinostat þ azacytidine advanced hematological malignancies phase I (NCT00351975)

entinostat þ azacytidine CML, AML, MDS phase I (NCT00101179)

phase II (NCT00313586)

mocetinostat þ azacytidine AML phase II (NCT00666497)

panobinostat þ azacytidine MDS, CMML, AML phase I (NCT00946647)

panobinostat þ decitabine MDS, AML phase I/II (NCT00691938)

romidepsin þ decitabine leukemia, MDS phase I (NCT00114257)

vorinostat þ azacytidine AML, MDS phase II (NCT00948064)

phase I/II (NCT00392353)

vorinostat þ decitabine NHL, AML, ALL, CML phase I (NCT00275080, NCT00479232)

hematologic cancer phase I (NCT00357708)
a Source: http://www.clinicaltrials.gov/. Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; CLL, chronic lymphoid

leukemia; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome; NHL, non-Hodgkin’s
lymphoma; nSCLC, non-small-cell lung cancer; VPA, valproic acid. bRepresents the National Clinical Trials identifier (NCT ID).



Perspective Journal of Medicinal Chemistry, 2010, Vol. 53, No. 19 6787

or combination therapy for leukemia.Most clinical trials are
directed toward chronic lymphoid leukemia (CLL), since
overexpression of Bcl-2 is observed in this type of hemato-
logic malignancy.66

Although focus will be imposed on the development of SMIs
regarding the BCL-2 gene, two of the most important para-
digms of antisense technology with successful introduction into
clinical practice must be mentioned: oblimersen sodium67

(Genta, G3139, 4a) and SPC 299668 (4b). In particular, 4a is a
18-nucleotide antisense molecule targeting the initiation codon
region (codons 1-6) of BCL-2 mRNA.67 Oblimersen sodium
has successfully completed a phase I/II clinical trial on chronic
myeloid leukemia (CML) treatment as a monotherapy and is
currently under further clinical investigation (up to phase III
trials) as combination therapy for CLL, CML, AML, and
ALL.14 Some of the biodistribution problems that arose be-
cause of its polyanionic character and rapid metabolism are

hoped to be solved through PEGylation of the molecule.69

Furthermore, applying the new technology of locked nucleic
acids, 4b is a 16-nucleotide antisense molecule that has reached
the clinic and is now examined in a phase I/II trial in patients
with relapsed or refractory CLL.68

Screening of natural products for potential Bcl-2 inhibi-
tors revealed that black tea polyphenols, and especially 2f,
inhibit Bcl-2 function, althoughwith limited specificity, since
these molecules also affect other pathways related to cell
survival.70 However, a plethora of natural products has
already been studied for BCL-2 gene suppression including
antimycin A,71 chelerythrine,72 and purpurogallin,73 but the
most intensively studied and currently in clinical trials is
(-)-gossypol [AT-101 (4c) Figure 4, Table 5].

4c is currently under phase II clinical trials for CLL.
4c binds Bcl-2 (Ki = 320 nM), Bcl-XL (Ki = 480 nM), and
Mcl-1 (Ki = 180 nM).74 In studies where cell population

Figure 4. BH3 mimetics (BCL binding molecules).
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isolated from patients with CLL was used, 4c exhibits an
EC50 of 2 μM.75 But despite its potent binding and good
pharmacokinetic profile, thismolecule remains a highly reac-
tive aldehyde and thus exhibits important cellular toxicity.
On this basis and with the prospect to improve Bcl binding,
several analogues have emerged: apogossypol (4d), apogos-
sypolone (4e), and TW37 (4f) (Figure 4). The first two, which
are in preclinical development, do not possess the alde-
hyde group of gossypol and appear to better target Bcl-2
and Mcl-1.76,77 The synthetic 4f molecule appears to be the
most promising with submicromolar IC50 values for Bcl-2
and Mcl-1 and micromolar values for Bcl-XL.

78 Its binding
affinity to Mcl-1 is of extreme importance to avoid the
implication of drug resistance,79 and the fact that 4f is a
pan-Bcl inhibitor establishes it as a promising compound for
further development.

Furthermore, obatoclax mesylate (4g, Gemin X Biotechno-
logies, Figure 4) derived from lead optimization of prodigiosin,
tripyrrole natural products80 has reached phase II clinical trials
for the treatment of CLL and AML. With an EC50 of 1.7 μM
exhibited in B-cells derived from CLL patients,81 4g binding to
Bcl-2, Bcl-w, Bcl-XL, andMcl-1 is in the lowmicromolar range,
although there is certain variability in the values reported,
probably due to its poor solubility.82 However, a report from
a recent phase I trial has confirmed a very short t1/2 andmodest
single agent activity of 4g, thus suggesting a possible use in
combination therapy only.83

Finally, in the area of rational design, additional SMIs have
been identified by computational screening. These areHA14-184

(4k), its soluble analogue sHA14-185 (4l), and BH3I-1 (4m) and
analogues.86 Such molecules are some of the Bcl-2 suppressors
identified thus far, but none of them advanced to clinical deve-
lopment. Abbott Laboratories through NMR fragment screen-
ing developed a series of compounds including A-38535887 (4h)
and ABT-73788 (4i). Such experience led researchers recently to
identify ABT-263 (4j), which exhibits acceptable oral bioavail-
ability and is now under clinical development.89 As far as these
molecules are concerned, the Bcl-XL hydrophobic groove was
initially divided into two smaller sites that were separately tar-
geted by SMIs, whichwere linked and slightly optimized to con-
stitute a single precursor molecule bearing the acylsulfonamide

moiety (Bcl-XL Ki = 0.036 μM).90 Attempts to minimize bind-
ing to human serum albumin yielded the molecule 4h.87 At this
point, Bcl-XL was specifically targeted, so 4h bound much less
tightly toBcl-2 (Ki=67nM), comparedwith thebinding toBcl-
XL (Ki = 0.8 nM). In order to achieve dual inhibition of both
Bcl-2 and Bcl-XL, binding deeper in the groove was imperative
and the piperidine moiety was under the scope at this time.
Replacementwith a piperazinemoiety that is further substituted
with a 40-chlorobiphenyl moiety was the most favorable, and 4i

was discovered.88 4i had high affinity for both Bcl-2 and Bcl-XL

(8 and 30 nM, respectively), and CLL cells proved to under-
go apoptosis at very low concentrations (EC50 = 4.5 nM and
EC50= 7 nM),91,92 but this compound stayed at the preclinical
level because of low aqueous solubility (<1 μg/mL) and poor
oral bioavailability.93 Three sites were then selected as the most
prone to further optimization: (1) the dimethylamino groupwas
converted to morpholine in an effort to improve the metabolic
properties of themolecule, thoughwith thedrawbackof reduced
potency; (2) the nitro group, a site of potent toxicity, was
replacedwith a trifluoromethylsulfonyl group (in order to retain
the electron-withdrawing properties and as a consequence the
low pKa of the sulfonamide group required for activity); (3) the
biphenyl moiety transformed one phenyl ring to an appropriate
cycloalkene in order to conserve rigidity but excluded another
metabolically active site.89 The result was the generation of 4j
that, despite its poor water solubility, was up to 50% bioavail-
able in animal models after oral delivery94 because of its limited
metabolism. 4j attained high affinity for Bcl-2, Bcl-XL, and
Bcl-w (<1 nM), but no activity againstMcl-1 was observed. In
ALL xenograft models, 4j induced complete tumor regression94

and it advanced to clinical trials for hematologic malignancies.
6.2. Tyrosine Kinase Inhibitors. Protein kinases are one of

themost popular targets in the developmental therapeutics area
ofoncology.Sincekinasesmediate signalingpathways related to
tumor suppressor genes or oncogenes and are implicated in the
regulation of apoptosis, proliferation, invasion, and differentia-
tion, targeting them has been proved to be an efficient pharma-
cological intervention in malignancy. Since tyrosine kinase
targeting in hematological malignancies has been recently re-
viewed by Chase and Cross,95 attention here will be only to the
inhibitors, with emphasis given on their structure-activity

Table 5. BH3 Mimetics in Clinical Trials for Leukemiaa

compd target trials on leukemia further clinical trials

obatoclax mesylate

(4e) (GX15-070),

Gemin X Biotechnologies

Bcl-2, Bcl-XL,

Bcl-w, Mcl-1

CLL (phase I/II) MDS (phase II), myelofibrosis with

myeloid metaplasia (phase II), mantle

cell lymphoma (phase I), nSCLC

(phase I/II), Hodgkin’s disease

(phase II), NHL (phase I/II), SCLC

(phase I/II), MM (phase I/II)

AML (phase II)

ABT-263 (4j) (RG7423),

Abbott Laboratories

Bcl-XL, Bcl-2,

Bcl-w, Bcl-B

hematologic malignancies

(phase I/IIa)

SCLC (phase I), lymphoma,

CD20(þ) (phase I), solid tumors

(and combination) (phase I)

CLL (B-cell) (phase I), phase II

(-)-gossypol (4a) (AT-101,

levo-gossypol),

Ascenta Therapeutics

Bcl-2, Bcl-XL,

Bcl-w, Mcl-1

B-cell malignancies (CLL) phase II,

combination with lenalidomide (CLL)

phase I/II, combination with

rituximab (CLL) phase II

prostate cancer (phase II), lung cancer

(phase I/II), adrenocortical carcinoma

(phase II), brain and CNS tumors

(phase I/II), lymphoma (phase I),

nSCLC (phase I), esophageal or GE

junction cancer (phase I/II), SCLC

(phase I/II), follicular lymphoma (phase II)
a Source: Oncology KnowledgeBase http://oncologyknowledgebase.com/Login.aspx?ReturnUrl=%2fDefault.aspx. Abbreviations: AML, acute

myeloid leukemia; CLL, chronic lymphoid leukemia; CNS, central nervous system; GE, gastroesophageal; MDS, myelodysplastic syndrome; MM,
multiple myeloma; NHL, non-Hodgkin’s lymphoma; nSCLC, non-small-cell lung cancer; SCLC, small-cell lung cancer.
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relationships and kinase inhibitory profile. Following imatinib’s
(5a) breakthrough few years ago, seven kinase inhibitors were
developed and entered the market, namely, 5a [launched in
2001, Novartis, for CML, gastrointestinal stromal tumors
(GIST), and hypereosinophilic syndrome (HES)], erlotinib
[2005, OSI Pharmaceuticals/Gentech/Roche, for non-small-cell
lung cancer (NSCLC) and pancreas cancer], gefitinib (2005,
Astra-Zeneca, forNSCLC), dasatinib (5c) (2006, Bristol-Myers
Squibb, for imatinib resistant CML), nilotinib (5b) (2007,
Novartis, for imatinib resistant CML), sorafenib (6f) (2007,
Bayer/Onyx, for renal cancer), sunitinib (6d) (2007, Pfizer, for
renal cancerand imatinib refractoryGIST), and lapatinib (2007,
GlaxoSmithKline, for breast cancer). Since additional small
molecule kinase inhibitors are under clinical and preclinical
development for treatment of various malignancies other than
leukemia, their coverage is beyond the scope of this paper.

6.2.1. Bcr-Abl Kinase Inhibitors. Targeting the chimaeric
Bcr-Abl tyrosine kinase found in the majority of Phþ

(reciprocal translocation between chromosomes 9 and 22)
CML patients, 5a was developed as an effective inhibitor
from a series of protein kinase C (PKC) inhibitors where the

phenylaminopyrimidine core proved to have leadlike proper-
ties.96 Structure optimization led to the phenylaminopyrimidine
compound 5a8,97 (Figure 5) that had the appropriate solubility
and bioavailability to proceed to the clinic.98 5a proved to be a
very selective inhibitor among various kinases (Abl, c-Kit, Lck,
PDGFR, and CSF-1R),99 a property believed to result from its
binding to the inactive conformation of Bcr-Abl, the so-called
“DGF-out” conformation.100 But while selectivity is generally
observed, the vulnerability to mutations of this class of inhibi-
tors is the common cause of therapeutic inefficiency. Specifi-
cally, the “gatekeeper” (T315I) and also other mutations of
Bcr-Abl turn the balance toward the active conformation,101

rendering 5a and other inhibitors inactive.
This is partially attributed to the occurrence of specific

mutations in the gene encoding the Bcr-Abl fusion tyrosine
kinase that cause conformational changes and alter 5a’s
affinity and effectiveness. Another Bcr-Abl independent
mechanism of imatinib resistance is overexpression of the
efflux protein glycoprotein (P-gp) in CML that it is likely to
reduce the intracellular concentrations of 5a to subtherapeutic
levels, since 5a is a Pg-p substrate.102 To this end, the

Figure 5. Bcr-Abl tyrosine kinase inhibitors.
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accumulated knowledge thus far from structural and me-
chanistic insights of the polymorphic imatinib-insensitive
Bcr-Abl kinase were further exploited to override the emer-
gence of 5a clinical resistance in the newer protein kinase
inhibitor (PKI) drugs.7,103 Indeed, such a direction has led to
the clinical development of antileukemia multitarget kinase
inhibitors 5b and 5c (Figure 5) that are potent inhibitors of
multiple kinases, inhibit both wild-type and mutated Bcr-
Abl kinase, and are approved for the treatment of imatinib-
resistant CML patients.7 Unlike 5a, 5c is not a substrate of
P-gp and also human organic cation transporter 1 (hOCT1),
properties that are also beneficial in treating imatinib-resis-
tant CML.102,104

5b, a phenylaminopyrimidine like 5a, was developed as a
less stringent 5a analogue in order to bind putative mutated
Bcr-Abl domains.105 5b is 20-fold more potent than 5a, has
increased selectivity, andwas found to retain activity against 14
of 15 imatinib-resistant Bcr-Abl mutants.106 5c, on the other
hand, an aminothiazole Src/Abl kinase inhibitor107,108 with
activity on other kinases (Kit, PDGFR, ephrin A receptor
kinase,109 and the Tec kinase Btk110), has even greater affinity
(∼325-fold more potent than 5a) due, at least partially, to its
binding in inactive and active conformations of Bcr-Abl
kinase.111 In CML cell models bearing imatinib-resistant mu-
tants, 5c was found to be active in 14 of 15 cases.112 Recently,
18F-dasatinib was synthesized to be used as a prognostic tool
for kinase inhibitory activity with PET technology.113 Also in
clinical development are the benzamide Abl/Lyn kinase inhi-
bitor bafetinib114 (5d, Figure 5) and the 3-quinolinecarbonitrile
Src/Abl inhibitor bosutinib115,116 (5e, Figure 5). 5e is currently
in phase III clinical trials for CML,whereas 5d is in phase I. All
these compounds were proved to be active against the majority
of imatinib-resistantCMLcells. The exception in all cases is the
gatekeeper mutation T315I of Bcr-Abl, and resistance is
thought to be caused by the loss of a hydrogen bond within
the side chain of this residue.117

The binding of chemical molecules to kinases has been
extensively studied, along with the selectivity factors affect-
ing it and their modes of binding. Crystallographic studies
complemented with molecular simulation approaches have
provided the positions for inhibitor/enzyme interactions for
each inhibitor.118 A common structural characteristic of
most of the inhibitors synthesized is the pyrimidine core,
also present in ATP. Each inhibitor binds through different
sites in the ATP binding cleft of Bcr-Abl, and apart from the
structural flexibility of inhibitors, also of great importance in
binding to mutant Bcr-Abl forms is the size/volume of the
gatekeeper’s side chain because it allows access to the
hydrophobic cleft located behind it.119 Loss of activity
through disruption of hydrogen bond formation with the
side chain of the gatekeeper residue is another resistance
mechanism, as mentioned above. In order to override this
“Achilles’ heel” in CML therapy, many compounds are
currently in preclinical and clinical development.

Multitargeted kinase inhibitors may afford a solution
due to “off-target” activities they exhibit.7 XL228120 and
PHA-739358120 (5f), KW2449121 (5g), and AT9283122 (5h)
(identified as Aurora kinase inhibitors, Figure 5) have
potency against the mutant T315I and are in clinical devel-
opment for CML therapy.112 The aforementioned inhibitors
areATP-competitive but share the property of no interaction
with the gatekeeper residue, rendering them capable of T315I
inhibition, and this could be clinically effective in resistant
CML patients.123 Of novel mechanism, but not yet fully

characterized, is homoarringtonine124 (5i, Figure 5), a proa-
poptotic cephalotaxine ester, in phase II clinical trials for
patients with T315I mutant CML. Along with 5f, DCC-
2036117 (5j, structure not disclosed) is also under clinical
development. 5j is an inhibitor targeting “switch pockets”
distant from the gatekeeper region. However, tozasertib (5k,
Figure 5), a multitargeted Aurora kinase inhibitor, was
recently withdrawn from a phase II clinical trial because of
the rise of significant cardiotoxicity (see Table 6 for informa-
tion on second generation inhibitors).

Another approach to circumvent resistance is the use of
“allosteric” inhibitors that are non-ATP-competitive. Of these
molecules, attentionhas beendrawn toGNF-2125 (5l, Figure 5),
a compound that binds to the myristate binding cleft at the
N-terminus, resulting in stabilization of the protein in its
inactive state, and ON012380126 (5m, Figure 5), a potent
inhibitor that blocks the substrate-binding site of Bcr-Abl.
Unfortunately, these molecules have not been registered for
clinical evaluation so far. Finally, other strategies under devel-
opment to circumvent the emergence of resistance in CML
patients are the application of innovative molecules such as
small interfering RNAs (siRNAs), transcript-specific ribo-
zymes, antisense oligonucleotide and peptide nucleic acids.127

Even though selectivity was initially sought in order for an
inhibitor to proceed to the clinic, recently focus has been on
multitargeted kinase inhibitors. With multitargeted kinase in-
hibitors, by the use of a single inhibitor, multiple components of
the same signaling pathway can be regulated or multiple signal-
ing pathways and cellular processes can be related to cell sur-
vival, differentiation, or apoptosis, thus leading to a more effi-
cacious therapy and eradication of resistant cells. In such a case,
more than one leukemia type (e.g., AML, ALL) or even solid
tumors could be eventually treated. On the other hand, selec-
tivity is sought in order tominimize severe side effects of a broad
range kinase inhibitors. Additional studies on novel and current
inhibitors may provide a solution to this dilemma to keep in
balance the specificity with the multitargeted capacity, in terms
of improved therapeutic outcome. Alternative strategies to add-
ress this issue discussed above should also provide ground for
advancement in drug development in this area, in order for us to
lead to safer therapy with diminished resistance and remissions.

6.2.2. FLT3 Inhibitors. Activating mutations of the fms-
like tyrosine kinase 3 (FLT3) gene are the secondmost common
inAML(∼30%of patients) and themost important prognostic
factor so far.128 The most usual polymorphic form is internal
tandem duplication (ITD) in the juxtamembrane domain of
FLT3, but to a lesser extent point mutations of the tyrosine
kinase are also observed.129 Published data have indicated that
FLT3 inhibitors suppress growth of leukemia cell lines and
primary AML cells, a fact that is dependent upon expression of
mutant FLT3 for growth.130 Interestingly, one of the most
important findings is the existence of a FLT3 mutant form in
the LSC population.131 So far, many compounds have been
investigated in preclinical studies and eight of them are now
registered for clinical trials.

Tyrphostins (AG1295, AG1296), originally developed as
PDGFRand c-KIT inhibitors, were the first inhibitors reported
to directly inhibit FLT3 autophosphorylation132 but never
reached clinical trials because of their lack of specificity.129

Two indolocarbazoles, lestaurtinib (6a, CEP-701, KT-
5555, SPM-924, Cephalon)133 and midostaurin (6b, PKC412,
Novartis)134,135 (Figure 6), both staurosporine analogues, were
initially identifiedas tropomyosin receptorkinaseA (TrkA) and
PKCinhibitors, respectively, butwere later recognizedaspotent
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FLT3 inhibitors. Both these compounds appear to have med-
iocre effects as a monotherapy, but complete remissions were
reached (80-100% of patients) when combined with induction
chemotherapy.128

Indolinones have been extensively investigated as FLT3 inhi-
bitors, although this activity arose from selectivity studies and
the compounds were initially developed as vascular endothelial
growth factor receptor (VEGFR) inhibitors. The most studied
compounds are SU5416136 (6c) and 6d (Figure 6), the last being
therapeutically used in renal cell carcinoma and imatinib resis-
tant GIST. Both these compounds have inhibitory activity
on c-KIT, PDGFR, and VEGFR. 6d (SU11248, SUTENT,
Sugen)wasdevelopedon thebasis ofpreviousSARthat verified
that this molecule exhibited the most optimal overall profile in
terms of potency for inhibiting receptor tyrosine kinase targets,
solubility, protein binding, in vivo pharmacokinetic properties,
and antitumor efficacy.137 On the contrary, however, the deve-
lopment of 6c was terminated because of the short half-life of
this compound in vivo, a result that gave poor pharmacokinetic
properties to the molecule and limited clinical usefulness.138

6d as a monotherapy resulted in partial responses of short
duration,139 an effect also observedwith 6f (Figure 6). 6f (BAY
43-9006, NEXAVAR, Bayer) is marketed for renal cell carci-
noma, but the finding that it effectively inhibits FLT3-WT
(wild type) and FLT3-ITD (mutated)140 opened clinical trials
forAMLpatients. Inefficient as a single agent andwith activity
only for FLT3-ITD AML,141 it was also studied in phase II
trials with induction chemotherapy, and the last registered
clinical trial is a combination of G-CSF and Plerixafor plus
6f (programmed to start on March 201014).

Two more agents were registered for clinical trials but they
were discontinued. A phase I clinical trial with dovitinib142 (6g,
CHIR-258, TKI258, Novartis, Figure 6) on AML patients was
terminatedbecause of time-dependentdrugaccumulation in the
body.14 The piperazinylquinazoline tandutinib (6e) (MLN518,
CT53518, Millennium, Figure 6) studied in a phase II trial has
shown reduction of peripheral AML blast cells in 30% of
patients examined in FLT3-ITDAMLbutwith limited efficacy
on patients with FLT3 point mutations.143 The latter caused
discontinuation of the phase II trial.

The compounds that were tested until now were “acciden-
tally” found as FLT3 inhibitors andwhat was lacking from the
area of trials was a selective inhibitor, rationally designed for
FLT3 inhibition. AC220 (6i) (developed by Ambit Bioscie-
nces), a bis-arylurea derivative, is the most recent clinical
candidate in the category of FLT3 inhibitors. Discovered from
lead optimization ofAB-530144 (6h), 6i (Figure 6) is lacking the
carboxamide group and has the addition of a highly water-
soluble morpholine in order to exhibit an improved water
solubility and pharmacokinetics.145 When compared to the
other FLT3 inhibitors that entered clinical trials, 6i was the
most potent cellular FLT3-ITD inhibitor tested and also had
the most enhanced inhibitory effect on cell proliferation along
with highly attained selectivity.146 Apart from FLT3, kinases
with binding affinities within 10-fold Kd (1.6 nM) were c-KIT,
PDGFRR, PDGFRβ, RET, and CSF1R and within 100-fold
Kd were FLT1, FLT4, DDR1, and VEGFR2.146 When tested
in aphase I clinical trial inAMLpatients, the toxicologyprofile
was acceptable, rendering this compound tolerable and along
with the excellent pharmacokinetic profile exhibited in humans
and its beneficial clinical effects. The progression of 6i to
phase II was justified.147,148

Regarding the structural requirements of SMIs for bind-
ing to FLT3 kinase, the limited information is attributed to
unsuccessful attempts to cocrystallize a FLT3-inhibitor
complex. All the inhibitors discovered so far are ATP
competitive based on biochemical assays, indicating the
ability of these molecules to bind in the ATP pocket of
FLT3.149 Thus, general observations on structure are a
purine/pyrimidine moiety mimicking the adenine structure
in ATP and an aromatic domain that binds in the back
pocket of the ATP site.150

In summary, the AML patients who harbor FLT3 muta-
tions have the greater possibility to benefit from FLT3
inhibitors therapy. Data obtained thus far have shown that
FLT3 inhibitors exhibit optimal therapeutic potential when
combinedwith conventional chemotherapy. The sequence of
coadministered agents seems important, so that factor
should be taken under consideration in clinical trials.151

Also, focus should be given on pharmacokinetic profile as

Table 6. Second Generation Bcr-Abl Inhibitors in the Market and in Clinical Developmenta

compd molecular targets other than Bcr-Abl T315I inhibition status

nilotinib (5b) (AMN-107,

Tasigna), Novartis

- none marketed for imatinib

resistant CML

dasatinib (5c) (BMS-354825,

Sprycel), Bristol-Myers Squibb

Kit, PDGFR, ephrin A receptor

kinase, and Tec kinase Btk

none marketed for imatinib

resistant CML

bafetinib (5d) (NS-187,

INNO-406, CNS-9),

Nippon Shinyaku

Lyn none phase I

bosutinib (5e) (SKI-606), Wyeth Src none phase III

XL228, Exelixis Aurora A, IGF1, Src positive phase I

AT9283 (5h), Astex Therapeutics Aurora A and B, JAK-2, JAK-3 positive phase II

KW2449 (5g), Kyowa Hakko

Kirin Pharma Inc.

FLT3, FGFR, Aurora A positive phase II

PHA-739358 (5f), Nerviano

Medical Sciences

Aurora positive phase II

DCC-2036 (5j), Deciphera

Pharmaceuticals LLC

positive phase I/II

homoarringtonine (5i), Chemgenex

Pharmaceuticals

unknown mechanism of action positive phase II

tozasertib (5k) (MK-0457, VX-680,

VE-465), Merck

Aurora kinase, FLT3, JAK-2 positive phase II (terminated)

a Source: http://www.clinicaltrials.gov/. Abbreviations: CML, chronicmyeloid leukemia; FLT3, fms-like tyrosine kinase 3; IGF1, insulin like growth
factor 1; PDGFR, platelet derived growth factor receptor.
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well as toxicity of future inhibitors in order to attain stable
therapeutic concentration levels in the plasma over long
periods of time, a factor of crucial importance in clinical
responses.

6.2.3. VEGFR Inhibitors. In acute leukemia, angiogenesis
was identified as another potential therapeutic target.152 In
the most studied leukemia being AML, VEGF and other
proangiogenic proteins are involved in its pathophysiology,
since VEGF-promoted angiogenesis in bone marrow was
positively correlated to AML progression.153 Compounds
that have been examined in clinical trials for leukemias are
6c, 6d, vatalanib,154 pazopanib,155 and 6f. Since the main
field of investigation for these compounds is solid tumor
biology and therapy, only phase I trials have taken place for
leukemia with insufficient results.153 However, combination
therapy trials of these compounds with other anticancer
agents either of novel mechanism or of conventional chemo-
therapeutics are still in great demand in oncology.

6.3. mTOR Inhibitors.Rapamycin (7a, sirolimus, Figure 7)
and its analogues (also called “rapalogues”) are the most
studied of this field. Initially isolated from Streptomyces
hygroscopicus in the mid-1970s in a sample collected from
the Easter Island Rapa Nui, 7a was first characterized as a

potent antifungal and immunosuppressive agent. Antitumor
activity was detected on a NCI screening program taking
place in the 1980s, although its mechanism of action was
unknown until the mid-1990s when the mammalian target
protein of rapamycin (mTOR) was identified. mTOR exists
in two forms, mTOR1 and mTOR2.156 Extensive clinical
trials on 7a delivery for a variety of pathological conditions
resulted in its approval by the FDAas an immunosuppressor
in kidney transplantation in the late 1990s.157,158

Structurally, 7a is a macrocyclic lactone, including two
regions that bind to mTOR and the FK506-binding protein
(FKBP12). To be biologically active, 7a forms a complex
with FKBP12, which in turn binds to FKBP-rapamycin-
binding domain (FRB) domain adjacent to the catalytic
domain of mTOR, thus inhibiting the signaling cascade.159

The “rapalogues”mostly examined all bear these two regions
unmodifiedwith derivatization affecting only the substituent
on C-42 as has previously been revealed. Interestingly en-
ough, these compounds interact only with mTOR complex 1
(mTORC1), since the FRB domain in mTORC2 seems to be
inaccessible to them.160 This effect has been blamed for the
modest activity of rapalogues in the clinic, since there is
feedback activation of PI3K/AKT signaling.161

Figure 6. FLT3 inhibitors.



Perspective Journal of Medicinal Chemistry, 2010, Vol. 53, No. 19 6793

The most studied analogues of 7a are everolimus (7b), tem-
sirolimus (7c), and deforolimus (7d) (Figure 7). All these com-
pounds share great similarity to the parent compound being
modified only to the C-42 substituent. 7c, the 42-[2,2-bis-
(hydroxymethyl)]propionic ester of 7a, has improved water
solubility in comparison to the parent compound, and it is the
first analogue to be developed. After extensive clinical testing in
a number of malignancies, 7c acquired FDA approval in 2007
for the treatment of advanced renal cell carcinoma. In hemato-
logical malignancies it is currently being studied in CLL, AML,
CML either alone or in combination with other anticancer
agents (Table 7), but the most promising results came from a
clinical trial on mantle cell lymphoma with a response rate of
38%.162 In mantle cell lymphoma cells, mTOR signaling was
shown to be activated and contributing to tumor cell survival
and progression. On the other hand, mutations on phosphatase
and tensin homologue (PTEN), which acts as a tumor suppres-
sor gene, were found in most cancers and thought to be
responsible for rendering the cells resistant to apoptosis. The
same cell population, though, has proved to be significantly
more sensitive to sirolimus (7a), a fact of clinical importance
that needs further investigation in order to explore mTOR and
PTEN functions in mutated forms of malignancy.163,164

7b, 42-O-(2-hydroxyethyl)rapamycin, is an analogue de-
veloped forper os administration. It is currently approved as an
immunosuppressive agent by FDA for kidney and heart trans-
plantation (CERTICAN), as well as for renal cell carcinoma
resistant to treatment with 6d or 6f (AFINITOR). 7b is also
undergoing clinical trials for AML and ALL as monotherapy,
aswell as combination therapywith classical chemotherapeutic
agents or epigenetic drugs for AML, MDS, CLL, myeloma,
and lymphoma (Table 7). It is of great importance that inAML
cells, 7c and 7b suppress assembly of mTORC2, inhibiting
AKT signaling in vitro and in vivo.165 As deregulation of the
PI3K/AKT pathway is a common feature of hematological
malignancies, inhibition of mTORmay provide a useful novel
therapeutic strategy.

7d is a dimethylphosphinate rapamycin analogue that
retains high affinity to FKBP12 and is also stable in organic
solvents, water (regardless of the pH), and plasma. Adminis-
tration is possible via the intravenous route or per os.159 Most
clinical trials on 7d have focused on sarcoma and endometrial
cancer, but as far as leukemia is concerned, a phase II study in
patients with refractory hematologic malignancies has been
conducted, showing partial benefit for patients.166

There is a plethora of other rapalogues synthesized with
precursor-directed biosynthesis, genetic manipulation, and
directed mutasynthesis.167-170 However, since these analo-
gues never reached the clinic, we will not focus on them and
examine instead some SMIs of mTOR.

Selective SMIs of mTOR have been synthesized but are
still at preclinical levels of evaluation.171 Thus far, attention
has been drawn to mixed mTOR/PI3K inhibitors such as
SF1126172 (7e), NVP-BEZ235173 (7g) (Figure 7), and XL-
765174 (7h, structure undisclosed) that are currently in phase I
clinical trials. 7e is a prodrug of the morpholinochromenone
LY294002 (7f, Figure 7) with improved solubility and bio-
availability that exhibits pan-PI3K inhibition and is now
undergoing phase I evaluation for advanced or metastatic
solid tumors.172 7g is an imidazo[4,5-c]quinoline that inhibits
PI3K/mTOR by binding to their ATP cleft with low nano-
molar affinity.173 Finally, 7h is also a nanomolar inhibitor of
PI3K and mTOR currently in three phase I trials on solid
tumors and gliomas.

6.4. Proteasome Inhibitors. The potential role of protea-
some in leukemia has been extensively reviewed.175-177

Following commercialization of bortezomib178 (8a) for the
effective treatment of multiple myeloma and cell lymphoma,
a number of proteasome inhibitors have been synthe-
sized and, apart from 8a, four of them [MLN9708179 (8b),
salinosporamide A180 (8i), carfilzomib181 (8e), and CEP-
18770179 (8c, Figure 8)] are being evaluated in clinical trials
on hematological malignancies (mostly in multiple myeloma
and lymphoma).

Figure 7. mTOR inhibitors.
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Depending on the structure, the proteasome inhibitors thus
far studied can be divided into five classes: peptide aldehydes,
peptide boronates, peptide vinyl sulfones, peptide epoxyketones,
and β-lactones.182 Apart from β-lactones, all the other classes of
inhibitors are peptides harboring an electrophilic group at one
end that can form covalent bonds with the catalytic threonine
residue of the proteasome subunits.183β-Lactones formadducts.
Peptide aldehydes and vinyl sulfones sharemetabolic instability,
lack selectivity,177 and are not potent candidates for further
development and clinical application.

8a (MLN341, LDP-341, PS-341, MG-341, VELCADE,
developed by Millenium Pharmaceuticals) is an N-acyl-pseu-
dodipeptidylboronic acid and was developed in an effort to
replace the aldehydemoiety of proteasome inhibitors. Peptidyl
aldehydes are also potent inhibitors of thiol proteases and
calpains and display instability due to the acidity of the R-
proton. Replacement of the aldehyde with the boronic acid
moiety was favorable in terms of potency as well as selectivity,
since 8adisplayed IC50=0.6 nMand a 200 000-fold selectivity
for proteasome over cathepsins.178 Preclinical studies,184 fol-
lowed by extensive clinical trials resulted in commercialization
and the continuation of clinical trials for a variety of indica-
tions. Currently 8a is included in 453 clinical trials, 41 of which
refer to leukemia treatment.14 A large number of trials that
promote combination therapy with 8a are also under investi-
gation, and some of the most promising for leukemia include
combinations with tipifarnib185 (9a), 2a/2b, 1b, and romidep-
sin and classic chemotherapy.

8b is a novel proteasome inhibitor also developed by
Millenium Pharmaceuticals. It is an orally bioavailable
inhibitor that in plasma rapidly hydrolyzes to its metabolite
MLN2238, capable of binding reversibly to the chymotryp-
sine-like subunit of the 20S proteasome.186 It first entered
clinical trials on March 2009 in a phase I trial for advanced
nonhematological malignancies. Following that trial, two
more phase I trials for lymphoma and multiple myeloma

emerged, as well as a phase I/II trial on patients with relapsed
or refractory multiple myeloma.14

Another boronic acid in clinical development is 8c. Bearing
the pyridylcarboxamide moiety, this dipeptylboronic acid was
developed as an oral proteasome inhibitor. It displays selec-
tivity for the trypsin over chymotrypsin activity (more than
1000-fold), and in a panel of 42 protease assays only modest
inhibition of cathepsin G and chymase was observed. Cellular
permeability is very high (EC50=13.5 nM in the MOLT-4
cellular assay and IC50 = 13.7 nM in the enzyme assay), and
oral bioavailability in rats and mice was 54% and 39%,
respectively.179 8c is currently in a phase II clinical trial on
relapsed multiple myeloma refractory to recent therapy.

Upon delivery of 8a at recommended doses, limiting
toxicity arose that was related to peripheral neuropathy
and thrombocytopenia, in part due to the inhibition of serine
proteases (although much less in potency, there is parallel
inhibition of them). In this context, compounds of alterna-
tive chemical structure were sought and a very promising
candidate proved to be carfilzomib (PR-171, 8e). 8e, a
structural analogue of the natural product epoxomicin
(8d), belongs to the epoxyketone class of proteasome inhibi-
tors. 8e exhibits potency equal to that of 8a but greater
selectivity for the chymotrypsin-like activity of the prota-
some. Furthermore, in preclinical evaluation, 8e exhibited
promising tolerability and efficacy that resulted in clinical
evaluation trials, up to phase II, as a treatment for hemato-
logical malignancies.181

As an epoxide, 8e, is very reactive and its stability was too
problematic to allow oral administration. On the basis of
such data, accepted oral bioavailability values were war-
ranted, and afterward through a series of structure opti-
mization, the novel inhibitor PR-047 (8f) was developed
(Figure 8). Though an epoxide, the methoxymethylene
chains improved the molecule’s solubility and shortening of
the peptide part improved bioavailability.187 8f is still in

Table 7. Rapalogues (mTOR Inhibitors) in Currently Ongoing Clinical Trials for Leukemiaa

compd combination trials leukemia phase (NCT ID)b

sirolimus (7a) (rapamycin, Rapamune), Wyeth monotherapy acute leukemia, NHL phase I (NCT00068302)

þmitoxantrone AML, CML phase I (NCT00780104)

þetoposide

þcytarabine

þPEG-asparaginase ALL phase I (NCT00957320)

þcorticosteroids ALL phase I (NCT00874562)

þetoposide ALL, CML phase I/II (NCT00776373)

þcytarabine

þcombination chemotherapy AML phase II (NCT00634244)

temsirolimus (7c) (CCI-779, Torisel), Wyeth monotherapy CLL phase II (NCT00290472)

NHL, CLL phase II (NCT00084474)

þclofarabine AML phase II (NCT00775593)

þimatinib CML phase I (NCT00101088)

þIMC-A12 advanced or metastatic cancer phase I (NCT00678223)

everolimus (7b) (RAD001, RAD001C,

Afinitor, Certican), Novartis Pharma

monotherapy AML phase I (NCT00636922)

ALL phase I/II (NCT00968253)

þPKC412 AML, MDS phase I (NCT00819546)

þpanobinostat lymphoma, MM phase I (NCT00962507)

þbortezomib mantle cell lymphoma, NHL phase I (NCT00671112)

þalemtuzumab CLL phase I/II (NCT00935792)

þnilotinib AML phase I/II (NCT00762632)

þcytarabine AML phase I (NCT00544999)

þdaunorubicin
a Source: http://www.clinicaltrials.gov/. Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; CLL, chronic lymphoid

leukemia; CML, chronic myeloid leukemia;MDS, myelodysplastic syndrome;MM,multiple myeloma; NHL, non-Hodgkin’s lymphoma. bRepresents
the National Clinical Trials Identifier (NCT ID).
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preclinical evaluation, but with IC50 = 82 nM and oral
bioavailability of 17% (mouse), 21% (rat), and 39% (dog), it
has been recommended for clinical development.188

From the field of natural products, lactacystin (8g) and 8i

are two proteasome inhibitors of the β-lactone class. 8g is a
thioester prodrug, precursor to clasto-lactacystin (or omur-
alide, 8h, Figure 8) which is the active β-lactone-γ-lactam.189

This bicyclic ring system is also found in 8i but differently
substituted and is considered to be the active pharmacophore
of this group of compounds after evaluation of hydrolyzed
derivatives. 8i is a product of the marine actinomycete
Salinospora tropica that acts as an irreversibly bound inhi-
bitor of the proteasome. Moreover, apart from the chymo-
trypsin-like activity (2.6 nM) it also inhibits trypsin-like
activity (21 nM) and to a lesser degree caspase-like activity
(430 nM).180 8i is currently investigated in phase I clinical
trials for advanced malignancies, relapsed/refractory multi-
ple myeloma, solid tumors, and lymphoma. Also, preclinical
studies have shown potential use in CLL,190 and combina-
tion therapy with HDACIs is also conducted in leukemia
cells191 and in a phase I clinical trial (NCT00667082).

The binding kinetics of proteasome inhibitors seems to be of
utmost importance in their pharmacological profile. In parti-
cular, irreversible inhibitorsmight be trapped in proteasomes in
readily available sightsupon their first entrance in thebody (e.g.,
RBCs, liver), a fact that renders lower concentration inhibi-
tors to exhibit therapeutic efficacy in malignant sites (“sink
effect”).192 Such disadvantages are considered to be diminished

in the cases of 8a and 8b as well as 8c which are slowly and
rapidly reversible inhibitors, respectively. However, most
studies are needed to verify the pharmacological importance
of such an approach.

6.5. Farnesyl Transferase Inhibitors (FTIs).TheRas family
of genes encodes proteins implicated in key cellular processes
such as proliferation, differentiation, and survival. Ras activa-
tion is dependent on isoprenylation (farnesylation catalyzed by
FTase or geranylation catalyzed by GGTase) signaling its
transport from the cytoplasm to the membrane. Ras is fre-
quently deregulated in human cancer. Focusing on hematolo-
gical malignancies, Ras mutations have been observed in
10-65% of cases studied. More specifically, Ras mutations
have been encountered in 5-15%of patients inALL, 10-40%
inMDS,15%inAML,andup to65%inCMML.193Moreover,
Ras activation can occur through other mechanisms such as
through the Bcr-Abl chimaeric kinase in CML.194

FTIs were first synthesized in an effort to prevent activation
of RAS by blocking its post-translational modifications.130

These molecules prevent the transfer of a farnesyl moiety to a
cystein residue (belonging to the CAAX motif; C stands for
cysteine, A for aliphatic amino acid, and X for any amino acid)
of numerous substrate proteins, RAS included.195 So far, FTIs
are categorized in four classes of inhibitors based on the
approach being able to block FTase.193

6.5.1. Farnesyl Pyrophosphate (FPP)Analogues.Examples
of these agents, such as R-hydroxyfarnesylphosphonic acid,
were among the first FTIs to demonstrate inhibition in

Figure 8. Proteasome inhibitors.
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cell culture.193 However, the design and synthesis of these
analogues were swiftly terminated, since FPP is used in
multiple normal cellular processes and these analogues could
result in excessive toxicity.

6.5.2. CAAX Peptidomimetics. The most promising agent,
L-788123, was tested in a phase I clinical trial for advanced
solid tumors but was discontinued because of severe toxicity
(grade IV thrombocytopenia, fatigue, and cardiac conduc-
tion abnormalities).196 The agents that comprise this cate-
gory were all extensively ionized at normal pH values and
exhibited limited membrane permeability resulting in re-
duced in vivo activity.

6.5.3. Bisubstrate Analogues. These agents were developed
in an effort to simultaneously target both FPP and CAAX.
Problematic pharmacokinetic profile, however, was once
again displayed, since these agents had poor intracellular
infusion due to their large size.

6.5.4. Nonpeptidomimetic Inhibitors. This category in-
cludes heterogeneous small molecules belonging to a variety
of chemical structures. These non-peptidemimetics share the
common feature of competition with the protein-CAAX
motif. Since the previous categories of FTIs had unfavorable
physicochemical properties resulting in poor pharmacoki-
netics, the development of such inhibitors was focused on
small-molecule non-peptide mimetic agents. The most pro-
mising agents evaluated thus far [the orally bioavailable 9a,
lonafarnib130 (9b), and the iv administered BMS-214662197

(9c) (Figure 9)] were further processed in clinical trials and
are still under evaluation as a monotherapy or in combina-
tion with other anticancer drugs for the treatment of leuke-
mia and other malignancies (Table 8).

9awas the first FTI to enter the clinic in 1997. It is themost
extensively studied FTI, counting over 70 clinical trials on
various malignancies. In hematologic malignancies it has
reached phase III trials either alone or in combination with
other anticancer agents. 9a emerged from structure optimi-
zation after an initial computer-assisted screening procedure
on antifungal libraries of Janssen. The imidazole ring in its
structure seems of utmost importance, being also a common
feature with 9c, targeting the Zn2þ ion of FTase.

Having a stereocenter, the (R)-enantiomer of 9aproved tobe
about 50-fold more potent than the (S)-enantiomer, reaching
IC50 and EC50 values of 0.6 and 1.8 nM, respectively.198 Its
good oral bioavailability and linear pharmacokinetic profile

contributed to the numerous clinical evaluations conducted
thus far. From the very beginning, it was apparent that its use is
more beneficial in hematologic malignancies in comparison to
solid tumors.199Moreover, 9a’s concentration in bonemarrow
of leukemic patients appears to be 3- to 4-fold higher than
serum levels, making myeloid malignancies the most potent to
clinical response.200 So far, 9a has been clinically evaluated
mostly inAMLbut also inMDSandCML.185 Themost recent
combination clinical trials including 9a with conventional
chemotherapy are in phase III evaluation, and other trials with
etoposide and 8a are in phase II. Combination of 8awith 9ahas
been also advantageous, since it overcomes resistance in multi-
ple myeloma and AML cells in a preclinical survey.201

The benzocycloheptapyridyl pharmacophore emerged
from studies based on the screening of a library of chemical
compounds initially developed as potential antihistaminics by
Schering-Plough. Derivatization of the lead compound SCH-
37370 resulted in the discovery of 9b, a compound that, except
for its optimal potency (IC50=1.9 nMandCOS IC50=10 nM),
alsohadanadvantageouspharmacokinetic profile and couldbe
administered orally (76% oral bioavailability).202 Crystallogra-
phy studies on the complex of FTase with 9b inspired the
synthesis of indolocycloheptapyridyl compounds203 that were
further optimized to produce a second generation of inhibitors
bearing the known moiety of the imidazole. The most potent
inhibitor (SCH-226374) exhibited FTase IC50 in the subnano-
molar range and acceptable pharmacokinetic behavior but did
not proceed to clinical testing.204

The clinical evaluation of 9b is centered on progeria
(HutChinson-Gilford Syndrome) and solid tumors. Al-
though there are some clinical trials for leukemia therapy,
especially in CML, additional studies are required for final
conclusions on 9b’s potency in leukemia to be reached, since
the results so far were not extremely promising. To this end,
combination trials should also be conducted, since FTIs
seem to synergize with other anticancer agents.

9c, the less studied FTI, was derived from SAR studies on
a series of compounds bearing the imidazolylmethyltetrahy-
drobenzodiazepine scaffold. This agent demonstrated an
IC50 of 1.35 nM, an EC50 of 0.025 μM in cells (NIH3T3
SAG assay), and oral bioavailability of up to 56%.197

However, because of gastrointestinal and liver toxicity ob-
served after its oral administration, most recent studies have
used the intravenous route.195 In preclinical studies, 9c is

Figure 9. Farnesyl transferase inhibitors (FTIs).
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cytotoxic against several cell lines,205 but in the phase I
clinical trial conducted on AML and MDS patients the
responses were characterized as “transient” and of “minimal
significance”.206 Even though clinical investigations for 9c
ceased, the more recent observations for potential apoptosis
induction in myeloma,207 B-CLL,208 and CML cells209

may draw the attention back to the continuation of its
development. The latter is of great importance, since
selective induction of apoptosis in leukemia cells as well
as in LSCs has emerged as a fruitful approach in treating
leukemia.210

Although designed to blockRas signaling, the finding that
9a induced apoptosis in myeloma cells in a Ras-independent
manner211 raised skepticism on the mechanism behind the
use of FTIs. So far, themolecular targets identified that seem
to be implicated in the mode of action of FTIs include
farnesylated proteins such as Rho proteins, the PTP-CAAX
phosphatase, lamins A and B, and CENPs (further informa-
tion can be found in Raponi et al.212). Also, signaling path-
ways like the PI3K-AKT and MAPK/ERK, Fas, NF-κB,
and VEGF have been correlated to clinical response to
FTIs.213 In conclusion, the results obtained from the clinical
trials with FTIs look promising, although the exact under-
lying mechanism of FTI activity remains uncertain because
of the multiple signaling pathways that are dependent on
farnesylation. Another field that needs to be further explored
is the upcoming resistance to the current developed FTIs,214

in order to direct the drug design of future inhibitors and
define markers to identify patients most likely to respond to
this treatment.

6.6. CDK Inhibitors. Targeting of proteins that regu-
late the cell cycle progression has drawn the attention of

pharmaceutical companies in the 1990s. Cyclin-dependent
kinases (CDKs) are key cell cycle regulating proteins, and
their function is causally related to cell proliferation potential.
Very quickly they became a promising target and research on
inhibitors began, initially on pan-CDK inhibitors and gra-
dually on more selective ones. Deregulation of CDK func-
tionality is very common (expressed asCDKhyperactivation
or endogenous CDK inhibitors inactivation),215 and CDK
inhibitors are being evaluated in a number of trials for their
clinical efficacy. Since the literature on CDK inhibitors is
vast, only those that have undergone clinical evaluation are
mentioned (Table 9).

A number of flavonoids have been found to be effective
CDK inhibitors. The more extensively studied are flavo-
piridol216 (10a) and P276-00217 (10c, Figure 10). 10a is a
semisynthetic compound derived from the natural com-
pound rohitukine (Dysoxylum binectariferum) and the first
CDK inhibitor to enter clinical trials. Of the many clinical
trials that have taken place, the most promising results
come from recent studies on CLL216,218-220 and AML.221

The scientific interest coming from theCLL studies is the fact
that effectiveness was correlated and linked to certain cyto-
genetic abnormalities [del(17p13) and del(11q22)] related to
disease pathophysiology. Indeed, the clinical response was
much greater among the patients exhibiting cytogenetic
abnormalities, with a percentage of success reaching 40%
and 70%, respectively, thus leading regulatory authorities to
grant an orphan drug status for the treatment of CLL in
2007.222 On the other hand, 10a was combined with Ara-C
and mitoxantrone as a therapeutic alternative in AML,
where the response rate reached up to 75% and the survival
rates for patients significantly increased.

Table 8. Farnesyl Transferase Inhibitors in Clinical Trials for Leukemiaa

compd combination trials leukemia phase (NCT ID)b

tipifarnib (9a) (R115777,

Zarnestra), Janssen Pharmacutica

monotherapy leukemia phase I (NCT00022451)

advanced hematologic

cancer

phase I (NCT00005967)

AML phase III (NCT00093990, NCT00093470)

phase II (NCT00354146, NCT00093418,

NCT00048503, NCT00045396, NCT00027872)

phase I (NCT00101296)

MDS phase I/II (NCT00005846)

phase I (NCT00005845)

AML, MDS phase II (NCT00045396)

AML, CML phase I (NCT00004009)

GLL phase II (NCT00331591, NCT00360776)

þcytarabine, daunorubicin AML phase I (NCT00101153)

þidarubicin, cytarabine AML, MDS phase I/II (NCT00096122)

þchemotherapy AML, MDS phase I (NCT00124644)

phase II/III (NCT00454480)

þetoposide AML phase I (NCT00112853)

phase II (NCT00602771)

þbortezomib AML, CML phase I (NCT00383474)

AML phase II (NCT00510939)

þimatinib CML phase I (NCT00040105)

lonafarnib (9b) (SCH 66336,

Sarasar), Schering-Plough

monotherapy leukemia phase I/II (NCT00034684)

CML phase II (NCT00038597)

MDS, CMML phase III (NCT00109538)

þimatinib CML phase I (NCT00047502)

BMS-214662 (9c),

Bristol-Myers Squibb

monotherapy acute leukemia,

MDS, CML

phase I (NCT00006213)

a Source: http://www.clinicaltrials.gov/.Abbreviations:AML,acutemyeloid leukemia;CML, chronicmyeloid leukemia;CMML,chronicmyelomonocytic
leukemia; GLL, large granular lymphocyte leukemia; MDS, myelodysplastic syndrome. bRepresents the National Clinical Trials Identifier (NCT ID).
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10c belongs to a group of synthetic flavones studiedmostly
on solid tumors but recently registered for a phase I/II trial
on multiple myeloma (MM) and a phase II trial on mantle
cell lymphoma. 10c is a more potent CDK inhibitor com-
pared to 10a (up to 3-fold antiproliferative activity in human
cancer cell lines), with nanomolar affinity to CDK1, CDK4,
and CDK9 and micromolar affinity to CDK2, CDK6, and
CDK7.217,223

Another important class of CDK inhibitors is purine-based
compounds. Olomoucine was one of the first inhibitors identi-
fied and the lead compound for the synthesis of roscovitine.224

The (R)-isomer of roscovitine225 (seliciclib, CYC202, 10b,
Figure 10) was found to be more potent and entered clinical
trials on solid tumors, althoughwith no encouraging results due
to its pan-CDK inhibitory activity. The analogues purvala-
nol A226 and NU6140227 are in preclinical development as the
more recent pyrazolotriazine bioisoster N-&-N1 (GP0210).228

Because they aremore potent but have no particular selectivity,
their potential clinical usage is still under question.

The pyrimidine scaffold also seems to be of critical impor-
tance in developing efficient CDK inhibitors. On the basis of
former observations on pyrido[2,3-d]pyrimidin-7-ones, PD-
0332991229 (10d, Figure 10) emerged as a selective CDK4 and
CDK6 inhibitor (IC50 of 11 and 16 nM, respectively).230 10d is
currently studied in phase I and phase II clinical trials either as a
monotherapy or in combination with 8a and dexamethazone.
Also of the pyrimidine core and under clinical evaluation is the
pyrazolo[1,5-a]pyrimidine SCH 727965231 (10e) that has been
found to effectively inhibit CDK1, CDK2, CDK5, and CDK9.
This CDK inhibitor is currently included in four clinical trials
regarding hematological malignancies (monotherapy or com-
bination therapy), but results from these trials have yet to be
published in order to evaluate its potential clinical use.

TheaminothiazoleSNS-032232 (BMS-387032,10f, Figure 10)
is an inhibitor of CDK2, CDK7, and CDK9 and is currently
in a phase I clinical trial on B-lymphoid malignancies

(CLL, mantle cell lymphoma). Additionally, its mechanism of
action in CLL is being elucidated as stated by Chen et al.233 In
particular, the poor bioavailability of this compound was
attributed to its ability to act as a substrate of P-gp, a fact that
allowed scientists to generate new advanced analogues with
improved permeability and lower efflux.234,235

Identified from fragment-based screening, the pan-CDK
inhibitor AT7519236 (10g, Figure 10) is in phase I clinical trials
on advanced solid tumors and non-Hodgkin’s lymphoma
(NHL). Its affinity is higher for CDK2,CDK4, andCDK5 (47,
67, and 18 nM, respectively).236 In another phase I clinical trial
in advanced cancer, the indazoleAG-024322237 (10h, Figure 10)
was found to be inadequate for differentiating from other
pharmaceutic interventions and the trial was terminated.

CDK inhibitors that are currently in clinical trials for cancer
therapy, other than leukemia, are the pan-CDK inhibitor
of the diaminopyrimidine scaffold R547238 (10i, Ro-4584820)
(phase I trials on solid tumors) and the 4,5-dihydro-1H-
pyrazolo[4,3-h]quinazoline PHA-848125239 (phase II trial on
thymic carcinoma) (10j, Figure 10). The last is a potent orally
bioavailable pan-CDK inhibitor that exhibits slightly higher
affinity for CDK2 but is also active against CDK4, CDK5,
CDK7, with additional good water solubility.239 Also under
preclinical evaluation are the 3-aminopyrazole PNU-292137240

(10k, Figure 10) and the selective CDK1 inhibitor RO-3306241

(10l, Figure 10).
Since CDK inhibitors were tested in clinical trials formore

than a decade and none advanced to the market yet, mostly
because of mediocre response rates and significant toxicities,
the effectiveness of this therapeutic intervention was ques-
tioned. In order to proceed more efficiently, the more
thorough elucidation of the functions that each CDK is
responsible for within the cell should be verified, whereas
the genetic characterization of various cancer cell pheno-
types that could be potential targets for specific CDK
inhibition should be further exploited.242 Another aspect

Table 9. CDK Inhibitors in Current Clinical Trials on Leukemiaa

compd targeted CDK molecule conditions phase (NCT ID)b

AG-024322 (10h), Pfizer CDK1, CDK2, and CDK4 advanced cancer phase I (NCT00147485)

flavopiridol (10a) (HL275, L-868275,

HMR-1275, NSC-649890, alvocidib),

Sanofi-Aventis

pan-CDK inhibitor acute leukemia phase I (NCT00470197)

refractory lymphoma or MM phase I/II (NCT00112723)

acute leukemia or CML phase I (NCT00278330)

AML phase II (NCT00795002,

NCT00634244)

AML, ALL, or CML phase I (NCT00101231)

CLL or prolymphotic leukemia phase II (NCT00464633,

NCT00098371)

CLL or small lymphocytic

lymphoma

phase I (NCT00058240,

NCT00735930, NCT00377104)

P276-00 (10c),

Nicholas Piramal

pan-CDK inhibitor MM phase I/II (NCT00882063)

mantle cell lymphoma phase II (NCT00843050)

PD-0332991 (10d), Pfizer CDK4 and CDK6 advanced cancer phase I (NCT00141297)

mantle cell lymphoma phase I (NCT00420056)

MM phase I/II (NCT00555906)

SCH 7727965 (10e),

Schering-Plough

CDK1, CDK2, CDK5,

and CDK9

advanced cancer phase I (NCT00871663,

NCT00871910)

AML, ALL phase II (NCT00798213)

mantle cell lymphoma, CLL phase II (NCT00871546)

SNS-032 (10f)

(BMS-387032), Synesis

CDK2, CDK7, and CDK9 B-lymphoid malignancies phase I (NCT00446342)

a Source: http://www.clinicaltrials.gov/. Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; CLL, chronic lymphoid
leukemia; CML, chronic myeloid leukemia; MM, multiple myeloma. bRepresents the National Clinical Trials Identifier (NCT ID).
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that also needs attention while evaluating CDK inhibitors
for their clinical potential is their pharmacokinetics. This is
why sufficient exposure throughout the cell cycle should be
guaranteed with a reasonable route of administration be-
cause of the existing tumor cell heterogeneity.243

6.7. Other Apoptosis Promoting Agents. Aurora kinase
inhibitors, as well as heat-shock protein 90 (HSP90) inhibitors,
are currently in clinical trials for evaluation on leukemia and
other malignancies, as reviewed elsewhere.244,245 Furthermore,
compounds targeting signaling pathways that are under clini-
cal evaluation for leukemia are PF-04449913 (Hedgehog
inhibitor)14 and the γ-secretase inhibitor MK0752 (targeting
Notch).246 Targeting X-linked inhibitor of apoptosis proteins
(XIAPs), the small molecule AEG40826 and the antisense
oligonucleotide AEG 35156 are currently in clinical trials.
The last has advanced to phase II in combination with che-
motherapeutics for the treatment ofAML.247Results seemvery
encouraging especially in the combination trial, since the com-
plete response rate in patients with AML refractory to single
agent chemotherapy reached 91%.248

The skepticism on specific enzyme targeting and its effi-
ciency on a heterogeneous disease such as cancer has led

researchers to seek alternative routes in fighting the disease.
Multitarget kinase inhibitors, combination of agents that act
through different signaling pathways or combination of
conventional with novel therapeutics, are under investiga-
tion; such attempts have already been described above.
Apart from multitarget kinase inhibitors, the simultaneous
inhibition of different signaling pathways with one molecule
is a strategy under consideration, though such an approach
still has not been evaluated in the clinic. Such an example
comes with CU-201 (developed by Curis), a multitargeted
inhibitor of HDAC, Abl, and Src.249 Another novel pro-
posed strategy is targeting of signaling networks instead of
specific enzymes. The molecular chaperone HSP90 is such a
nodal protein implicated in multiple signaling networks. In
addition, its participation in mitochondria homeostasis per-
mitted Kang and Altieri to target HSP90 in that cellular
compartment250 as a means to increase selectivity. In parti-
cular, combinatorial chemistry proved to be a useful tool and
their compounds (gamitrinibs whose chemical structures
consist of a mitochondria targeting part, a linker, and an
HSP90 inhibitor) have proven to be successful in xenografted
human tumor cell lines in mice. However, this approach is

Figure 10. Cycline dependent kinase (CDK) inhibitors.
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still in its infancy, so more studies are needed to further
evaluate the therapeutic potential.

7. Future Directions for Antileukemic Research

7.1. Therapeutic Strategies To Specifically Target LSCs.

The discovery of potential molecular targets as well as the
development of more effective and less cytotoxic anticancer
drugs still remains a highly challenging endeavor almost 35
years after the “war on cancer” was declared.251 To over-
come the main obstacles hampering anticancer drug dis-
covery, it is crucial to elucidate and thoroughly understand
the molecular complexity and cellular heterogeneity seen in
tumor cell initiation and progression.12 Experimental evi-
dence accumulated since 1997 supports the cancer stem cell
hypothesis, meaning that a specific cell populationwithin the
tumor has the capacity for self-renewal as well as the pro-
liferative potential to maintain and expand the population
of malignant cells.252-254 Cancer stem cells remain resistant
and invulnerable to standard chemotherapy because of their
quiescent state, while they express typical markers of stem
cells. It is still not clear if cancer stem cells originate from
genetically or epigenetically deregulated normal stem cells or
by dedifferentiation of somatic tumor cells to the stemlike
counterparts. Data published by Blair et al.3 and by Bonnet
andDick4 showed that a subpopulation of purified leukemic
cells (Thy1-, CD34þ, CD38-) injected into NOD/SCID
mice caused leukemia histologically similar to that of the
donor. If leukemias can be considered as aHSCdisorder or a
reacquisition of HSC characteristics, it can then be expected
that many signaling pathways classically associated with
leukemia initiation and progression also regulate normal
HSC development.253

Normal hematopoiesis requires complex and highly orche-
strated interactions between the bone marrow microenviron-
ment (or niche) and HSCs, a process that may be deregulated
upon leukemia in away to cause perturbation of self-renewal of
HSCs and support of self-renewal of LSCs.255,256 Therefore, the
developmentof innovative leukemia therapeuticsmust bebased
on the molecular pathways and targets regulating survival and
self-renewal of both HSCs and LSCs. These includeHSC niche
components, signaling pathways (SCF/c-kit-R, EPO-R-JAK2/
STAT, Wnt, Notch, HOX), inducer-receptor interactions,
superfine chromatin-structure modifications, fused transcrip-
tion factors, microRNAs, and signaling of apoptosis, as pre-
sented elsewhere.1 Moreover, recent data indicate the impor-
tance of PTEN tumor suppressor and the phosphatidylinositol
3-OH-kinase (PI3K) pathway in LSCs formation.257 Interest-
ingly enough, it has been shown that Pten-gene loss in mouse
HSCs through the activation of β-catenin pathway and via
multiple genetic and molecular alterations contributes to LSC
transformation and expansion.258 These data were further
strengthenedbyobservations showing thatβ-catenin is essential
for survival and self-renewal ofLSCs insensitive to 5a treatment
in mice with Bcr-Abl-induced CML, thus providing a new
strategy for targeting these cells.248 Recent observations also
revealed the proliferative effects of the cytokine interferon-R
(IFNR) on LSCs and the importance of eliminating resistance
to chemotherapyLSCs in leukemiapatients. Inparticular, it has
been indicated that although dormant LSCs are resistant to
antiproliferative agent 5-fluorouracil (5-FU), LSCs pretreated
with IFNR, and thus exit cell dormancy and induced to proli-
ferate, are efficiently eliminated by 5-FU exposure in vivo.259

The latter support the notion of the potential therapeutic

application of IFNs in shifting quiescent LSCs into the cell
cycling state to increase their sensitivity to cytotoxic agents.260

The identification and purification of LSCs along with the
establishment of their characteristics are expected to provide
future powerful diagnostic, prognostic, and therapeutic tools
in the clinical oncology of leukemias. Moving forward, the
identification of molecular mechanisms underlying the be-
havior of HSCs and LSCs will permit better understanding
of how leukemia is initiated and allow more efficient treat-
ment options by innovative bifunctional and multitargeted
medicines, impinging on crucial molecular networks and
targets that regulate execution decisions of LSCs to self-
renew, proliferate, differentiate, and/or undergo apoptosis.
To this end, by using genomic approaches to identify poten-
tial key regulators of HSC quiescence and leukemogenesis,
researchers were able to identify a subset of genes that may
contribute to leukemic development from LSCs.261 Alterna-
tively, detailed understanding of the interactions occurring
between normal hematopoietic and leukemic cells within the
bone marrow microenvironment can uncover unknown
mechanisms that reflect the emergence of drug resistance
and heterogeneity seen in leukemic cells.1,10,262

7.2. Pharmacogenomics and the Development of New Anti-

leukemia Drugs. Identification of novel drug-exploitable
molecular targets allowed the development of new molecularly
designed anticancer medicines. However, the emergence of
rapidly acquired drug resistance to limit clinical efficacy of
recently developed chemotherapeutics alongwith tumor genetic
variability andmicroenvironmental factors suggested that phar-
macogenomics-related drug response variations may also
contribute to the clinical outcome of cancer patients.7,103

Furthermore, the concept of genetically based antileukemia
drug development is further strengthened by the fact that
individual patient genetic makeup also affects the clinical out-
come and alters the strategy of drug delivery toward the so-
called personalized cancer medicine. Therefore, it becomes
obvious that the study and exploitation of interindividual
genetic variations are crucial to understand why some antineo-
plastic agents are safe and effective in some patients but not
in others. This means that the assessment of germ line poly-
morphisms and host pharmacogenomics of specific disease-
related as well drug pharmacodynamics- and pharmacoki-
netics-related genes is nowconsidered as an important approach
in developing new antileukemia molecularly targeted medicines
and in assessing their efficacy and safety in clinical practice.7,263

Clinical translation of drug-related genetic information
has allowed the analysis of genetic variations of drug-meta-
bolizing enzymes, transporters, and receptors on a routine
basis aswell as the correlation of such datawith altered drug-
related responses.263-265 Technological achievements in
DNA microarray methodologies allowed the recording of
gene expression profile data in clinical samples that predict a
patient’s clinical outcome to a given or more than one
therapeutic agent.266 Indeed, leukemia was one of the first
diseases in which such an approach was applied in order to
analyze the effects of 3a on genes and pathways involved in
the so-called differentiation therapy of APL.267 Another
example of pharmacogenomics in leukemia is one of thio-
purine S-methyltransferase (TPMT), an enzyme involved in
the deactivation of 6-mercaptopurine (6-MP) and thiogua-
nine (TG) used for the treatment of childhood ALL. Inter-
individual genetic variations of theTPMT gene were the first
to prove the clinical value of individualizing drug dosage to
achieve a better clinical outcome (a specific personalized
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medicine approach).265,268 Numerous pharmacogenomic
studies have indicated that low TPMT enzyme activity is well
correlated with the observed hematopoietic toxicity of thiopur-
ine drugs in clinical practice. Three variant alleles of the TPMT
gene (TPMT*2, TPMT*3A, TPMT*3C) were found to ac-
count for more than 95% of the inherited variability in TPMT
enzyme activity. This finding has permitted genetic identifica-
tion of patients at high risk of toxicity after thiopurine therapy.
Indeed, clinical evidence now indicates that some TPMT-
deficient patients that are homozygous in one TPMT gene
variant require a reduction of more than 90% of the conven-
tional dose of thiopurine drugs in order to respond efficiently
without toxicity in this therapy.269

Another example related to pharmacogenomics of leukemia
therapeutics refers to methotrexate (MTX) delivery in child-
hoodALL treatment protocols. As has been shown, the uptake
of MTX within ALL cells is primarily mediated by the trans-
porter SLC19A1, whereas its cellular efflux is mediated by the
ATP-binding cassette transporters (ABC transporters) like
ABCC2.270 Such processes contribute toward the achievement
of therapeutic intracellular MTX concentrations being able to
inhibit its target enzyme dihydrofolate reductase (DHFR) and
thus to exert its antileukemia effect. Specific mutations in either
theABCC2 transporter gene or folate-dependent enzymes 5,10-
methylenetetrahydrofolate reductase (MTHFR) and thymidy-
late synthase (TYMS) have been shown to influence MTX
treatment response in childhood ALL.269 Recently, the syner-
gistic effect of specific TPMT and MTHFR genotypes on the
observed6-MPtoxicity inpatientswith childhoodALLhas also
been clinically evaluated.271

Although the prospects for basic research in pharmacoge-
nomics and the generationof considerable amounts of data look
very promising, their incorporation in new drug development
and clinical practice is quite challenging.263 Furthermore, by
assessment of the actions of drugs at the molecular level, it has
been clearly shown that medicines exert their effects via specific
“molecularnetworks” involvingseveralgenesandproteins.2,27,272

Thegeneticbackground involved in the responseof anorganism
to delivered drugs is complex and is also determined by the
interaction of genes with drugs. This interplay between genes
and drugs also implies that their interaction can modulate
the pharmacotherapy outcome through either genetic variation
or drug-regulated gene expression that consequently leads to
phenotypic variation, e.g., differential pharmacological res-
ponse. The complexity underlying the gene expression profile
in crucial cellular decisions related to leukemogenesis is recently
outlined by shedding light on the transcriptional network that
controls growth arrest and differentiation in human myeloid
leukemia cells.273 Also, concerning the clinical use of epigene-
tic drugs in MDS to modulate gene expression and affect
cell growth, differentiation, and apoptosis, such complexity
emerged at the molecular level, since it has been recently shown
that DNA methylation inhibitors azacitidine, 2b, and 2c exert
differential effects on the cancer gene expression profile inAML
cells.274 Interestingly enough, the methylation inhibitors nepla-
nocin A and 3-deazaneplanocin A (DZNep) block the in vitro
differentiation programofmurine erythroleukemia (MEL) cells
by activating silent DNA regions,275 whereas DZNep reacti-
vates developmentally regulated genes by inhibiting histone
methylation.276 In addition, it is now well-known that gene
expression can also be affected by environmental factors, like
epigenetic phenomena including DNA methylation, histone
acetylation, and RNA interference (RNAi) mechanisms that
represent crucial mechanisms for establishing specific gene

expression patterns in cellular physiology.5,39,277 The latter
might also contribute into interindividual variability seen in
drug response, since both environmental and genomic factors
may finally modulate drug efficacy and cause toxicity in the
body. As a matter of fact, the design of pharmacogenomics
studies to analyze the molecular mechanisms underlying drug
response variability must be taken into consideration upon
attempting to develop innovative anticancer drugs.

8. Concluding Remarks

Experimental evidence accumulated over the past several
years has indicated that human leukemias represent disorders
of self-renewal, growth, differentiation, and/or apoptosis
of HSCs or their early multipotent progenitors. The dis-
covery of LSCs as LICs indicates that human leukemias
may arise from such immortalized cells that share specific
properties with normal HSCs. It has been said that LSCs
are quiescent and thus less vulnerable to conventional
antiproliferative agents. LSCs represent quite heteroge-
neous cell populations that exhibit different degrees of
sensitivity to leukemia therapeutics. Therefore, other inno-
vative multifunctional and multilevel target antileukemia
agents are desperately needed to eradicate LSCs and their
transformed progeny.

The fact that leukemia cells regardless of their genetic
abnormalities and the acquired multidrug resistance (MDR)
are able to regulate their renewal capacity, proliferation,
differentiation, and apoptosis at different levels (signaling,
growth and proliferation response stimuli, cell cycle-depen-
dent kinases, proteasome activation, etc.) suggests that LSCs
(or LICs) cannot be affected by treatment with conventional
cytotoxic agents but by targeted therapies on specific sites
(e.g., an enzyme) acting at different levels.Multilevel targeting
can be done either by using classes of agents that complement
each other under a combination chemotherapy approach or
by developing bi- or multifunctional agents promoting or
blocking more than one vital process of leukemic develop-
ment. Agents able to block self-renewal, halt cell growth,
promote differentiation, and provoke apoptosis can be useful
for effective leukemia therapy.

This paper reviews the basic principles of leukemia cell
differentiation and apoptosis with emphasis on differentia-
tion inducers, hybrid/polar compounds, HDACIs, DNMT
inhibitors, retinoids and retinoid mimetics, Bcl-2 inhibitors,
regular and chimeric tyrosine kinase inhibitors, FLT3 kinase
inhibitors, VEGFR inhibitors, mTOR inhibitors, proteasome
inhibitors, FTIs, CDK inhibitors, and classes of agents deve-
loped and under clinical evaluation. The potential role of
pharmacogenomics in the development of these new antileu-
kemia agents is comprehensively discussed in a way to achieve
improved clinical outcomes through the application of perso-
nalized medicine concepts in cancer therapy.
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